Polo-like kinase 1 inactivation following mitotic DNA damaging treatments is independent of ataxia telangiectasia mutated kinase. 2004

Jin-Hui Yuan, and Yang Feng, and Rebecca H Fisher, and Sharon Maloid, and Dan L Longo, and Douglas K Ferris
Science Applications International Corporation-Frederick, Inc., National Cancer Institute-Frederick, Building 567, Room 218, Frederick, MD 21702, USA.

Polo-like kinase 1 (Plk1) is an important regulator of several events during mitosis. Recent reports show that Plk1 is involved in both G2 and mitotic DNA damage checkpoints. Ataxia telangiectasia mutated kinase (ATM) is an important enzyme involved in G2 phase cell cycle arrest following interphase DNA damage, and inhibition of Plk1 by DNA damage during G2 occurs in an ATM-/ATM-Rad3-related kinase (ATR)-dependent fashion. However, it is unclear how Plk1 is regulated in response to M phase DNA damage. We found that treatment of mitotic cells with DNA damaging agents inhibits Plk1 activity primarily through dephosphorylation of Plk1, which occurred in both p53 wild-type and mutant cells. Inhibition of Plk1 is not prevented by caffeine pretreatment that inhibits ATM activity and also occurs in ATM mutant cell lines. Furthermore, ATM mutant cell lines, unlike wild-type cells, fail to arrest after mitotic DNA damaging treatments. The phosphatidylinositol 3-kinase (PI3K) inhibitor, LY294002, reduces Plk1 dephosphorylation following mitotic DNA damaging treatments, suggesting that the PI3K pathway may be involved in regulating Plk1 activity. Earlier studies showed that inhibition of Plk1 by G2 DNA damage occurs in an ATM-dependent fashion. Our results extend the previous studies by showing that ATM is not required for dephosphorylation and inhibition of Plk1 activity following mitotic DNA damage, and also suggest that Plk1 is not a principal regulator or mediator of the mitotic DNA damage response.

UI MeSH Term Description Entries
D008938 Mitosis A type of CELL NUCLEUS division by means of which the two daughter nuclei normally receive identical complements of the number of CHROMOSOMES of the somatic cells of the species. M Phase, Mitotic,Mitotic M Phase,M Phases, Mitotic,Mitoses,Mitotic M Phases,Phase, Mitotic M,Phases, Mitotic M
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011494 Protein Kinases A family of enzymes that catalyze the conversion of ATP and a protein to ADP and a phosphoprotein. Protein Kinase,Kinase, Protein,Kinases, Protein
D011518 Proto-Oncogene Proteins Products of proto-oncogenes. Normally they do not have oncogenic or transforming properties, but are involved in the regulation or differentiation of cell growth. They often have protein kinase activity. Cellular Proto-Oncogene Proteins,c-onc Proteins,Proto Oncogene Proteins, Cellular,Proto-Oncogene Products, Cellular,Cellular Proto Oncogene Proteins,Cellular Proto-Oncogene Products,Proto Oncogene Products, Cellular,Proto Oncogene Proteins,Proto-Oncogene Proteins, Cellular,c onc Proteins
D004249 DNA Damage Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS. DNA Injury,DNA Lesion,DNA Lesions,Genotoxic Stress,Stress, Genotoxic,Injury, DNA,DNA Injuries
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D004317 Doxorubicin Antineoplastic antibiotic obtained from Streptomyces peucetius. It is a hydroxy derivative of DAUNORUBICIN. Adriamycin,Adriablastin,Adriablastine,Adriblastin,Adriblastina,Adriblastine,Adrimedac,DOXO-cell,Doxolem,Doxorubicin Hexal,Doxorubicin Hydrochloride,Doxorubicin NC,Doxorubicina Ferrer Farm,Doxorubicina Funk,Doxorubicina Tedec,Doxorubicine Baxter,Doxotec,Farmiblastina,Myocet,Onkodox,Ribodoxo,Rubex,Urokit Doxo-cell,DOXO cell,Hydrochloride, Doxorubicin,Urokit Doxo cell
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

Jin-Hui Yuan, and Yang Feng, and Rebecca H Fisher, and Sharon Maloid, and Dan L Longo, and Douglas K Ferris
May 2021, Human molecular genetics,
Jin-Hui Yuan, and Yang Feng, and Rebecca H Fisher, and Sharon Maloid, and Dan L Longo, and Douglas K Ferris
June 2010, Cell cycle (Georgetown, Tex.),
Jin-Hui Yuan, and Yang Feng, and Rebecca H Fisher, and Sharon Maloid, and Dan L Longo, and Douglas K Ferris
December 2000, Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research,
Jin-Hui Yuan, and Yang Feng, and Rebecca H Fisher, and Sharon Maloid, and Dan L Longo, and Douglas K Ferris
January 2010, Recent results in cancer research. Fortschritte der Krebsforschung. Progres dans les recherches sur le cancer,
Jin-Hui Yuan, and Yang Feng, and Rebecca H Fisher, and Sharon Maloid, and Dan L Longo, and Douglas K Ferris
October 2013, Biochemistry and cell biology = Biochimie et biologie cellulaire,
Jin-Hui Yuan, and Yang Feng, and Rebecca H Fisher, and Sharon Maloid, and Dan L Longo, and Douglas K Ferris
January 2014, Mini reviews in medicinal chemistry,
Jin-Hui Yuan, and Yang Feng, and Rebecca H Fisher, and Sharon Maloid, and Dan L Longo, and Douglas K Ferris
October 2014, Mini reviews in medicinal chemistry,
Jin-Hui Yuan, and Yang Feng, and Rebecca H Fisher, and Sharon Maloid, and Dan L Longo, and Douglas K Ferris
June 2010, Leukemia & lymphoma,
Jin-Hui Yuan, and Yang Feng, and Rebecca H Fisher, and Sharon Maloid, and Dan L Longo, and Douglas K Ferris
December 2012, Journal of virology,
Jin-Hui Yuan, and Yang Feng, and Rebecca H Fisher, and Sharon Maloid, and Dan L Longo, and Douglas K Ferris
January 2017, Journal of rare diseases research & treatment,
Copied contents to your clipboard!