| D008024 |
Ligands |
A molecule that binds to another molecule, used especially to refer to a small molecule that binds specifically to a larger molecule, e.g., an antigen binding to an antibody, a hormone or neurotransmitter binding to a receptor, or a substrate or allosteric effector binding to an enzyme. Ligands are also molecules that donate or accept a pair of electrons to form a coordinate covalent bond with the central metal atom of a coordination complex. (From Dorland, 27th ed) |
Ligand |
|
| D008954 |
Models, Biological |
Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. |
Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic |
|
| D002454 |
Cell Differentiation |
Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. |
Differentiation, Cell,Cell Differentiations,Differentiations, Cell |
|
| D006801 |
Humans |
Members of the species Homo sapiens. |
Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man |
|
| D000818 |
Animals |
Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. |
Animal,Metazoa,Animalia |
|
| D013601 |
T-Lymphocytes |
Lymphocytes responsible for cell-mediated immunity. Two types have been identified - cytotoxic (T-LYMPHOCYTES, CYTOTOXIC) and helper T-lymphocytes (T-LYMPHOCYTES, HELPER-INDUCER). They are formed when lymphocytes circulate through the THYMUS GLAND and differentiate to thymocytes. When exposed to an antigen, they divide rapidly and produce large numbers of new T cells sensitized to that antigen. |
T Cell,T Lymphocyte,T-Cells,Thymus-Dependent Lymphocytes,Cell, T,Cells, T,Lymphocyte, T,Lymphocyte, Thymus-Dependent,Lymphocytes, T,Lymphocytes, Thymus-Dependent,T Cells,T Lymphocytes,T-Cell,T-Lymphocyte,Thymus Dependent Lymphocytes,Thymus-Dependent Lymphocyte |
|
| D015398 |
Signal Transduction |
The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. |
Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal |
|
| D054389 |
Receptors, CCR1 |
CCR receptors with specificity for a broad variety of CC CHEMOKINES. They are expressed at high levels in MONOCYTES; tissue MACROPHAGES; NEUTROPHILS; and EOSINOPHILS. |
Antigens, CD191,CC Chemokine Receptor 1,CCR1 Receptors,CD191 Antigens,CC Chemokine Receptors 1,CCR1 Receptor,CD191 Antigen,Antigen, CD191,Receptor, CCR1 |
|
| D054390 |
Receptors, CCR2 |
CCR receptors with specificity for CHEMOKINE CCL2 and several other CCL2-related chemokines. They are expressed at high levels in T-LYMPHOCYTES; B-LYMPHOCYTES; MACROPHAGES; BASOPHILS; and NK CELLS. |
Antigens, CD192,CC Chemokine Receptor 2,CCR2 Receptors,CD192 Antigens,CC CKR2B,CC Chemokine Receptor-2,CC Chemokine Receptors 2,CCR-2A MCP-1 Receptor,CCR2 Receptor,CCR2a Receptor,CCR2b Receptor,CCR2b Receptors,MCP-1 Receptor,MCP-1 Receptor 2B,MCP-1 Receptor CCR-2A,MCP-1 Receptors,MCP-1RA,MCP-1RB,Monocyte Chemoattractant Protein 1 Receptor,CCR 2A MCP 1 Receptor,Chemokine Receptor-2, CC,MCP 1 Receptor,MCP 1 Receptor 2B,MCP 1 Receptor CCR 2A,MCP 1 Receptors,MCP-1 Receptor, CCR-2A,Receptor CCR-2A, MCP-1,Receptor, CCR-2A MCP-1,Receptor, CCR2,Receptor, CCR2a,Receptor, CCR2b,Receptor, MCP-1,Receptor-2, CC Chemokine,Receptors, CCR2b,Receptors, MCP-1 |
|
| D018664 |
Interleukin-12 |
A heterodimeric cytokine that plays a role in innate and adaptive immune responses. Interleukin-12 is a 70 kDa protein that is composed of covalently linked 40 kDa and 35 kDa subunits. It is produced by DENDRITIC CELLS; MACROPHAGES and a variety of other immune cells and plays a role in the stimulation of INTERFERON-GAMMA production by T-LYMPHOCYTES and NATURAL KILLER CELLS. |
Edodekin Alfa,IL-12,Natural Killer Cell Stimulatory Factor,Cytotoxic Lymphocyte Maturation Factor,IL 12,IL-12 p70,IL12,Interleukin 12,Interleukin-12 p70,Interleukin 12 p70 |
|