Tumor suppressor proteins as regulators of cell differentiation. 1998

Z R Li, and R Hromchak, and A Mudipalli, and A Bloch
Roswell Park Cancer Institute, Buffalo, New York 14263, USA.

The products of the tumor suppressor genes are considered to function as specific inhibitors of tumor cell growth. In this communication, we present evidence to show that these proteins inhibit tumor cell proliferation by participating in the activation of tumor cell differentiation. The ML-1 human myeloblastic leukemia cells used in this study proliferate when treated with insulin-like growth factor I and transferrin but differentiate to monocytes when exposed to tumor necrosis factor alpha or transforming growth factor beta1, or to macrophage-like cells when treated with both these cytokines. Initiation of proliferation but not of differentiation was followed by a 20- to 25-fold increase in the nuclear level of the DNA polymerase-associated processivity factor PCNA and of the proliferation-specific transcription factor E2F1. In contrast, induction of differentiation but not of proliferation was followed by a 25- to 30-fold increase in the nuclear level of the tumor suppressor proteins p53 (wild type), pRb, and p130/Rb2 and of the p53-dependent cyclin kinase inhibitor p21/Cip1. p53 and p21/Cip1, respectively, inhibit the expression and activation of PCNA, whereas p130 and pRb, respectively, inhibit the expression and activation of E2F1. As a result, G1-S-associated DNA and mRNA synthesis is inhibited, growth uncoupled from differentiation, and maturation enabled to proceed. Where this function of the tumor suppressor proteins is impaired, the capacity for differentiation is lost, which leads to the sustained proliferation that is characteristic of the cancer cell.

UI MeSH Term Description Entries
D007334 Insulin-Like Growth Factor I A well-characterized basic peptide believed to be secreted by the liver and to circulate in the blood. It has growth-regulating, insulin-like, and mitogenic activities. This growth factor has a major, but not absolute, dependence on GROWTH HORMONE. It is believed to be mainly active in adults in contrast to INSULIN-LIKE GROWTH FACTOR II, which is a major fetal growth factor. IGF-I,Somatomedin C,IGF-1,IGF-I-SmC,Insulin Like Growth Factor I,Insulin-Like Somatomedin Peptide I,Insulin Like Somatomedin Peptide I
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D009000 Monocytes Large, phagocytic mononuclear leukocytes produced in the vertebrate BONE MARROW and released into the BLOOD; contain a large, oval or somewhat indented nucleus surrounded by voluminous cytoplasm and numerous organelles. Monocyte
D010750 Phosphoproteins Phosphoprotein
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins

Related Publications

Z R Li, and R Hromchak, and A Mudipalli, and A Bloch
January 2002, Developmental cell,
Z R Li, and R Hromchak, and A Mudipalli, and A Bloch
December 1995, The International journal of developmental biology,
Z R Li, and R Hromchak, and A Mudipalli, and A Bloch
November 2022, Wiley interdisciplinary reviews. RNA,
Z R Li, and R Hromchak, and A Mudipalli, and A Bloch
January 2012, Frontiers in bioscience (Landmark edition),
Z R Li, and R Hromchak, and A Mudipalli, and A Bloch
February 2001, Nature immunology,
Z R Li, and R Hromchak, and A Mudipalli, and A Bloch
January 2011, Biochemical Society transactions,
Z R Li, and R Hromchak, and A Mudipalli, and A Bloch
October 2013, Development (Cambridge, England),
Z R Li, and R Hromchak, and A Mudipalli, and A Bloch
April 2014, Innate immunity,
Z R Li, and R Hromchak, and A Mudipalli, and A Bloch
December 2012, Cancer letters,
Z R Li, and R Hromchak, and A Mudipalli, and A Bloch
December 2002, Oncogene,
Copied contents to your clipboard!