Correlation between genetic regulation of antibody responsiveness and protective immunity induced by Plasmodium berghei vaccination. 1979

A M Heumann, and C Stiffel, and L Monjour, and A Bucci, and G Biozzi

High (H) and low (L) antibody responder lines of mice were produced by two independent bidirectional selective breedings for quantitative antibody responsiveness to heterologous erythrocytes (selection I and selection II). In both selections the antibody response to P. berghei antigens was 8- to 10-fold higher in H than in L lines. The character "high response" presents an incomplete dominance o- 18% in selection I and 67% in selection II. In selection II the variance analysis indicates that at least three independent loci intervene in the regulation of responsiveness to P. berghei antigens. The innate resistance and the protective efficacy of vaccination against P. berghei infection induced by parasitized erythrocytes was measured in H and L lines and in the interline hybrids F1, BcH, and BcL of selections I and II. No very significant difference was observed in the innate resistance to P. berghei infection between H and L mice of both selections. Vaccination induced a very efficient protection in the two H lines (94 and 95% survival), whereas only a weak protection was induced in the two L lines (16 and 31% survival); the degree of protection is intermediate in interline hybrids F1, BcH, and BcL. In both selections a good linear correlation was demonstrated between the level of vaccination-induced antibody and the degree of resistance measured as percentage of survival. The present results indicate that the vaccination-induced P. berghei immunity is essentially due to the antibody response, whereas the bactericidal activity of macrophages and the cell-mediated immunity do not play a determinant role.

UI MeSH Term Description Entries
D007113 Immunity, Innate The capacity of a normal organism to remain unaffected by microorganisms and their toxins. It results from the presence of naturally occurring ANTI-INFECTIVE AGENTS, constitutional factors such as BODY TEMPERATURE and immediate acting immune cells such as NATURAL KILLER CELLS. Immunity, Native,Immunity, Natural,Immunity, Non-Specific,Resistance, Natural,Innate Immune Response,Innate Immunity,Immune Response, Innate,Immune Responses, Innate,Immunity, Non Specific,Innate Immune Responses,Native Immunity,Natural Immunity,Natural Resistance,Non-Specific Immunity
D008288 Malaria A protozoan disease caused in humans by four species of the PLASMODIUM genus: PLASMODIUM FALCIPARUM; PLASMODIUM VIVAX; PLASMODIUM OVALE; and PLASMODIUM MALARIAE; and transmitted by the bite of an infected female mosquito of the genus ANOPHELES. Malaria is endemic in parts of Asia, Africa, Central and South America, Oceania, and certain Caribbean islands. It is characterized by extreme exhaustion associated with paroxysms of high FEVER; SWEATING; shaking CHILLS; and ANEMIA. Malaria in ANIMALS is caused by other species of plasmodia. Marsh Fever,Plasmodium Infections,Remittent Fever,Infections, Plasmodium,Paludism,Fever, Marsh,Fever, Remittent,Infection, Plasmodium,Plasmodium Infection
D010962 Plasmodium berghei A protozoan parasite of rodents transmitted by the mosquito Anopheles dureni. Plasmodium bergheus,berghei, Plasmodium
D005802 Genes, MHC Class II Genetic loci in the vertebrate major histocompatibility complex that encode polymorphic products which control the immune response to specific antigens. The genes are found in the HLA-D region in humans and include H-2M, I-A, and I-E loci in mice. Class II Genes,Genes, Class II,Genes, HLA Class II,MHC Class II Genes,Class II Gene,Gene, Class II
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000917 Antibody Formation The production of ANTIBODIES by proliferating and differentiated B-LYMPHOCYTES under stimulation by ANTIGENS. Antibody Production,Antibody Response,Antibody Responses,Formation, Antibody,Production, Antibody,Response, Antibody,Responses, Antibody
D000941 Antigens Substances that are recognized by the immune system and induce an immune reaction. Antigen
D014611 Vaccination Administration of vaccines to stimulate the host's immune response. This includes any preparation intended for active immunological prophylaxis. Immunization, Active,Active Immunization,Active Immunizations,Immunizations, Active,Vaccinations
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

A M Heumann, and C Stiffel, and L Monjour, and A Bucci, and G Biozzi
December 1982, Parassitologia,
A M Heumann, and C Stiffel, and L Monjour, and A Bucci, and G Biozzi
February 1973, Experimental parasitology,
A M Heumann, and C Stiffel, and L Monjour, and A Bucci, and G Biozzi
June 1971, Science (New York, N.Y.),
A M Heumann, and C Stiffel, and L Monjour, and A Bucci, and G Biozzi
May 1969, Nature,
A M Heumann, and C Stiffel, and L Monjour, and A Bucci, and G Biozzi
April 2000, Immunological reviews,
A M Heumann, and C Stiffel, and L Monjour, and A Bucci, and G Biozzi
July 2020, Vaccines,
A M Heumann, and C Stiffel, and L Monjour, and A Bucci, and G Biozzi
October 1976, Infection and immunity,
A M Heumann, and C Stiffel, and L Monjour, and A Bucci, and G Biozzi
January 2009, Infection and immunity,
A M Heumann, and C Stiffel, and L Monjour, and A Bucci, and G Biozzi
October 1967, Nature,
A M Heumann, and C Stiffel, and L Monjour, and A Bucci, and G Biozzi
April 1985, Annals of tropical medicine and parasitology,
Copied contents to your clipboard!