Early streptozotocin-diabetes mellitus downregulates rat kidney AT2 receptors. 2001

G J Wehbi, and J Zimpelmann, and R M Carey, and D Z Levine, and K D Burns
Department of Cellular and Molecular Medicine, Division of Nephrology, The Kidney Research Centre, Ottawa Hospital Research Institute and University of Ottawa, Ottawa, Ontario, Canada.

The interaction of ANG II with intrarenal AT1 receptors has been implicated in the progression of diabetic nephropathy, but the role of intrarenal AT2 receptors is unknown. The present studies determined the effect of early diabetes on components of the glomerular renin-angiotensin system and on expression of kidney AT2 receptors. Three groups of rats were studied after 2 wk: 1) control (C), 2) streptozotocin (STZ)-induced diabetic (D), and 3) STZ-induced diabetic with insulin implant (D+I), to maintain normoglycemia. By competitive RT-PCR, early diabetes had no significant effect on glomerular mRNA expression for renin, angiotensinogen, or angiotensin-converting enzyme (ACE). In isolated glomeruli, nonglycosylated (41-kDa) AT1 receptor protein expression (AT1A and AT1B) was increased in D rats, with no change in glycosylated (53-kDa) AT1 receptor protein or in AT1 receptor mRNA. By contrast, STZ diabetes caused a significant decrease in glomerular AT2 receptor protein expression (47.0 +/- 6.5% of C; P < 0.001; n = 6), with partial reversal in D+I rats. In normal rat kidney, AT2 receptor immunostaining was localized to glomerular endothelial cells and tubular epithelial cells in the cortex, interstitial, and tubular cells in the outer medulla, and inner medullary collecting duct cells. STZ diabetes caused a significant decrease in AT2 receptor immunostaining in all kidney regions, an effect partially reversed in D+I rats. In summary, early diabetes has no effect on glomerular mRNA expression for renin, angiotensinogen, or ACE. AT2 receptors are present in glomeruli and are downregulated in early diabetes, as are all kidney AT2 receptors. Our data suggest that alterations in the balance of kidney AT1 and AT2 receptor expression may contribute to ANG II-mediated glomerular injury in progressive diabetic nephropathy.

UI MeSH Term Description Entries
D007672 Kidney Cortex The outer zone of the KIDNEY, beneath the capsule, consisting of KIDNEY GLOMERULUS; KIDNEY TUBULES, DISTAL; and KIDNEY TUBULES, PROXIMAL. Cortex, Kidney
D007678 Kidney Glomerulus A cluster of convoluted capillaries beginning at each nephric tubule in the kidney and held together by connective tissue. Glomerulus, Kidney
D007679 Kidney Medulla The internal portion of the kidney, consisting of striated conical masses, the renal pyramids, whose bases are adjacent to the cortex and whose apices form prominent papillae projecting into the lumen of the minor calyces. Kidney Papilla,Kidney Medullas,Kidney Papillas,Medulla, Kidney,Medullas, Kidney,Papilla, Kidney,Papillas, Kidney
D007703 Peptidyl-Dipeptidase A A peptidyl-dipeptidase that catalyzes the release of a C-terminal dipeptide, oligopeptide-|-Xaa-Yaa, when Xaa is not Pro, and Yaa is neither Asp nor Glu. Thus, conversion of ANGIOTENSIN I to ANGIOTENSIN II, with increase in vasoconstrictor activity, but no action on angiotensin II. It is also able to inactivate BRADYKININ, a potent vasodilator; and has a glycosidase activity which releases GPI-anchored proteins from the membrane by cleaving the mannose linkage in the GPI moiety. (From https://www.uniprot.org April 15, 2020). ACE1 Angiotensin-Converting Enzyme 1,ACE1 Protein,Angiotensin Converting Enzyme,Angiotensin Converting Enzyme 1,Antigens, CD143,CD143 Antigens,Dipeptidyl Carboxypeptidase I,Kininase II,Peptidase P,Angiotensin I-Converting Enzyme,Carboxycathepsin,Dipeptidyl Peptidase A,Kininase A,ACE1 Angiotensin Converting Enzyme 1,Angiotensin I Converting Enzyme,Carboxypeptidase I, Dipeptidyl,Peptidyl Dipeptidase A
D008297 Male Males
D011945 Receptors, Angiotensin Cell surface proteins that bind ANGIOTENSINS and trigger intracellular changes influencing the behavior of cells. Angiotensin Receptor,Angiotensin Receptors,Angiotensin II Receptor,Angiotensin III Receptor,Receptor, Angiotensin II,Receptor, Angiotensin III,Receptor, Angiotensin
D012083 Renin A highly specific (Leu-Leu) endopeptidase that generates ANGIOTENSIN I from its precursor ANGIOTENSINOGEN, leading to a cascade of reactions which elevate BLOOD PRESSURE and increase sodium retention by the kidney in the RENIN-ANGIOTENSIN SYSTEM. The enzyme was formerly listed as EC 3.4.99.19. Angiotensin-Forming Enzyme,Angiotensinogenase,Big Renin,Cryorenin,Inactive Renin,Pre-Prorenin,Preprorenin,Prorenin,Angiotensin Forming Enzyme,Pre Prorenin,Renin, Big,Renin, Inactive
D003921 Diabetes Mellitus, Experimental Diabetes mellitus induced experimentally by administration of various diabetogenic agents or by PANCREATECTOMY. Alloxan Diabetes,Streptozocin Diabetes,Streptozotocin Diabetes,Experimental Diabetes Mellitus,Diabete, Streptozocin,Diabetes, Alloxan,Diabetes, Streptozocin,Diabetes, Streptozotocin,Streptozocin Diabete
D000809 Angiotensins Oligopeptides which are important in the regulation of blood pressure (VASOCONSTRICTION) and fluid homeostasis via the RENIN-ANGIOTENSIN SYSTEM. These include angiotensins derived naturally from precursor ANGIOTENSINOGEN, and those synthesized. Angiotensin
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

G J Wehbi, and J Zimpelmann, and R M Carey, and D Z Levine, and K D Burns
December 1993, Proceedings of the National Academy of Sciences of the United States of America,
G J Wehbi, and J Zimpelmann, and R M Carey, and D Z Levine, and K D Burns
January 2009, Nephron. Physiology,
G J Wehbi, and J Zimpelmann, and R M Carey, and D Z Levine, and K D Burns
June 1995, The Journal of clinical investigation,
G J Wehbi, and J Zimpelmann, and R M Carey, and D Z Levine, and K D Burns
January 1986, Experimental pathology,
G J Wehbi, and J Zimpelmann, and R M Carey, and D Z Levine, and K D Burns
June 2014, Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas,
G J Wehbi, and J Zimpelmann, and R M Carey, and D Z Levine, and K D Burns
September 1986, The Journal of pharmacology and experimental therapeutics,
G J Wehbi, and J Zimpelmann, and R M Carey, and D Z Levine, and K D Burns
August 1979, Lakartidningen,
G J Wehbi, and J Zimpelmann, and R M Carey, and D Z Levine, and K D Burns
October 1993, Diabetologia,
G J Wehbi, and J Zimpelmann, and R M Carey, and D Z Levine, and K D Burns
February 2006, American journal of physiology. Renal physiology,
G J Wehbi, and J Zimpelmann, and R M Carey, and D Z Levine, and K D Burns
July 1980, Microvascular research,
Copied contents to your clipboard!