Hydrogen peroxide induces apoptosis of chondrocytes; involvement of calcium ion and extracellular signal-regulated protein kinase. 2001

S Asada, and K Fukuda, and F Nishisaka, and M Matsukawa, and C Hamanisi
Department of Orthopaedic Surgery, Kinki University School of Medicine, Osaka-sayama, Osaka, Japan.

OBJECTIVE Recent observations demonstrated that reactive oxygen species facilitate cartilage degradation. We demonstrated that hydrogen peroxide (H2O2) caused inhibition of proteoglycan synthesis, induction of apoptosis and stimulation of extracellular signal-regulated protein kinase (ERK) of the chondrocytes (Inflamm Res 48: 399-403, 1999). To determine whether activation of ERK is involved in the induction of chondrocyte apoptosis, we examined the signal transduction pathways in this hydrogen peroxide induced apoptosis. METHODS Bovine articular chondrocytes were cultured. To determine the induction of apoptosis, Annexin V staining and terminal deoxynucleotidyl transferase were used. The activity of caspase-3 was measured using an apopain assay kit. Intracellular Ca2+ imaging was observed after fura2-AM loading. RESULTS Hydrogen peroxide enhanced annexin V positive apoptotic cells and caspase-3 activity, which is an executor of apoptosis. Hydrogen peroxide also enhanced intracellular Ca2+ and preincubation with the intracellular Ca2+ chelator protected chondrocytes against hydrogen peroxide-induced cell apoptosis, indicating that an increase in the cytosolic Ca2+ plays a decisive role in this action. When ERK activity was blocked with geldanamycin and PD098059, increased apoptosis was evident. CONCLUSIONS Hydrogen peroxide induces chondrocyte apoptosis via Ca2+ signaling, and ERK is involved in these signal transduction pathways.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D011809 Quinones Hydrocarbon rings which contain two ketone moieties in any position. They can be substituted in any position except at the ketone groups.
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002614 Chelating Agents Chemicals that bind to and remove ions from solutions. Many chelating agents function through the formation of COORDINATION COMPLEXES with METALS. Chelating Agent,Chelator,Complexons,Metal Antagonists,Chelators,Metal Chelating Agents,Agent, Chelating,Agents, Chelating,Agents, Metal Chelating,Antagonists, Metal,Chelating Agents, Metal
D004533 Egtazic Acid A chelating agent relatively more specific for calcium and less toxic than EDETIC ACID. EGTA,Ethylene Glycol Tetraacetic Acid,EGATA,Egtazic Acid Disodium Salt,Egtazic Acid Potassium Salt,Egtazic Acid Sodium Salt,Ethylene Glycol Bis(2-aminoethyl ether)tetraacetic Acid,Ethylenebis(oxyethylenenitrile)tetraacetic Acid,GEDTA,Glycoletherdiamine-N,N,N',N'-tetraacetic Acid,Magnesium-EGTA,Tetrasodium EGTA,Acid, Egtazic,EGTA, Tetrasodium,Magnesium EGTA
D004791 Enzyme Inhibitors Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction. Enzyme Inhibitor,Inhibitor, Enzyme,Inhibitors, Enzyme
D005419 Flavonoids A group of phenyl benzopyrans named for having structures like FLAVONES. 2-Phenyl-Benzopyran,2-Phenyl-Chromene,Bioflavonoid,Bioflavonoids,Flavonoid,2-Phenyl-Benzopyrans,2-Phenyl-Chromenes,2 Phenyl Benzopyran,2 Phenyl Benzopyrans,2 Phenyl Chromene,2 Phenyl Chromenes
D006861 Hydrogen Peroxide A strong oxidizing agent used in aqueous solution as a ripening agent, bleach, and topical anti-infective. It is relatively unstable and solutions deteriorate over time unless stabilized by the addition of acetanilide or similar organic materials. Hydrogen Peroxide (H2O2),Hydroperoxide,Oxydol,Perhydrol,Superoxol,Peroxide, Hydrogen
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

S Asada, and K Fukuda, and F Nishisaka, and M Matsukawa, and C Hamanisi
September 2002, Calcified tissue international,
S Asada, and K Fukuda, and F Nishisaka, and M Matsukawa, and C Hamanisi
April 1998, American journal of respiratory cell and molecular biology,
S Asada, and K Fukuda, and F Nishisaka, and M Matsukawa, and C Hamanisi
October 2003, Experimental cell research,
S Asada, and K Fukuda, and F Nishisaka, and M Matsukawa, and C Hamanisi
March 2002, The Journal of biological chemistry,
S Asada, and K Fukuda, and F Nishisaka, and M Matsukawa, and C Hamanisi
January 2005, The Journal of pharmacology and experimental therapeutics,
S Asada, and K Fukuda, and F Nishisaka, and M Matsukawa, and C Hamanisi
October 2008, Clinical cancer research : an official journal of the American Association for Cancer Research,
S Asada, and K Fukuda, and F Nishisaka, and M Matsukawa, and C Hamanisi
August 1998, American journal of respiratory cell and molecular biology,
S Asada, and K Fukuda, and F Nishisaka, and M Matsukawa, and C Hamanisi
July 2007, Clinical and experimental pharmacology & physiology,
Copied contents to your clipboard!