Organization and functional analysis of the mouse transporter associated with antigen processing 2 promoter. 2001

E Arons, and V Kunin, and C Schechter, and R Ehrlich
Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel.

In accordance with the key role of MHC class I molecules in the adaptive immune response against viruses, they are expressed by most cells, and their expression can be enhanced by cytokines. The assembly and cell surface expression of class I complexes depend on a continuous peptide supply. The peptides are generated mainly by the proteasome and are transported to the endoplasmic reticulum by a peptide transport pump consisting of two subunits, TAP1 and TAP2. The proteasome low molecular weight polypeptide (2 and 7), as well as TAP (1 and 2) genes, are coordinately regulated and are induced by IFNs. Despite this coordinate regulation, examination of tumors shows that these genes can be discordantly down-regulated. In pursuing a molecular explanation for these observations, we have characterized the mouse TAP2 promoter region and 5'-flanking sequence. We show that the 5' untranslated regions of TAP2 genes have a characteristic genomic organization that is conserved in both the mouse and the human. The mouse TAP2 promoter belongs to a class of promoters that lack TATA boxes but contain a MED1 (multiple start site element downstream) sequence. Accordingly, transcription is initiated from multiple sites within a 100-nucleotide window. An IFN regulatory factor 1 (IRF1)/IRF2 binding site is located in this region and is involved in both basal and IRF1-induced TAP2 promoter activity. The implication of the extensive differences found among the promoters of class I heavy chain, low molecular weight polypeptide, and TAP genes, all encoding proteins involved in Ag presentation, is discussed.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009097 Multienzyme Complexes Systems of enzymes which function sequentially by catalyzing consecutive reactions linked by common metabolic intermediates. They may involve simply a transfer of water molecules or hydrogen atoms and may be associated with large supramolecular structures such as MITOCHONDRIA or RIBOSOMES. Complexes, Multienzyme
D010750 Phosphoproteins Phosphoprotein
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D012097 Repressor Proteins Proteins which maintain the transcriptional quiescence of specific GENES or OPERONS. Classical repressor proteins are DNA-binding proteins that are normally bound to the OPERATOR REGION of an operon, or the ENHANCER SEQUENCES of a gene until a signal occurs that causes their release. Repressor Molecules,Transcriptional Silencing Factors,Proteins, Repressor,Silencing Factors, Transcriptional
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D003546 Cysteine Endopeptidases ENDOPEPTIDASES which have a cysteine involved in the catalytic process. This group of enzymes is inactivated by CYSTEINE PROTEINASE INHIBITORS such as CYSTATINS and SULFHYDRYL REAGENTS.
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D005805 Genes, MHC Class I Genetic loci in the vertebrate major histocompatibility complex which encode polymorphic characteristics not related to immune responsiveness or complement activity, e.g., B loci (chicken), DLA (dog), GPLA (guinea pig), H-2 (mouse), RT-1 (rat), HLA-A, -B, and -C class I genes of man. Class I Genes,Genes, Class I,Genes, H-2 Class I,Genes, HLA Class I,MHC Class I Genes,H-2 Class I Genes,HLA Class I Genes,Class I Gene,Gene, Class I,Genes, H 2 Class I,H 2 Class I Genes

Related Publications

E Arons, and V Kunin, and C Schechter, and R Ehrlich
October 2003, Biochemical and biophysical research communications,
E Arons, and V Kunin, and C Schechter, and R Ehrlich
January 2001, Immunologic research,
E Arons, and V Kunin, and C Schechter, and R Ehrlich
January 1997, Advances in immunology,
E Arons, and V Kunin, and C Schechter, and R Ehrlich
August 2005, FEBS letters,
E Arons, and V Kunin, and C Schechter, and R Ehrlich
April 2005, Journal of immunology (Baltimore, Md. : 1950),
E Arons, and V Kunin, and C Schechter, and R Ehrlich
January 2001, Methods in molecular biology (Clifton, N.J.),
E Arons, and V Kunin, and C Schechter, and R Ehrlich
August 1997, Proceedings of the National Academy of Sciences of the United States of America,
E Arons, and V Kunin, and C Schechter, and R Ehrlich
March 2004, The Journal of biological chemistry,
E Arons, and V Kunin, and C Schechter, and R Ehrlich
May 1997, Brain research. Molecular brain research,
E Arons, and V Kunin, and C Schechter, and R Ehrlich
March 1998, Journal of immunology (Baltimore, Md. : 1950),
Copied contents to your clipboard!