Functional analysis by site-directed mutagenesis of the complex polymorphism in rat transporter associated with antigen processing. 1998

E V Deverson, and L Leong, and A Seelig, and W J Coadwell, and E M Tredgett, and G W Butcher, and J C Howard
Department of Immunology, The Babraham Institute, Cambridge, United Kingdom. tdeverson@bbsrc.ac.uk

The transporter associated with Ag processing, TAP, is an endoplasmic reticulum resident heterodimeric member of the ATP-binding cassette transporter family. TAP transports short peptides from cytosol to the endoplasmic reticulum lumen for loading into recently synthesized class I MHC molecules. In the rat, two alleles of the TAP2 chain differ in their permissiveness to the transport of peptides with small hydrophobic, polar, or charged amino acids at the C terminus, and this correlates with differences between the peptide sets loaded into certain class I molecules in vivo. We have used segmental exchanges and site-directed mutagenesis to identify the residues in rat TAP2 responsible for differential transport between the two alleles of peptides terminating above all in the positively charged residue, arginine. Of the 25 residues by which the two functional TAP2 alleles differ, we have localized differential transport of peptides with a C-terminal arginine to two adjacent clusters of exchanges in the membrane domain involving a total of five amino acids. Each cluster, transferred by site-directed mutagenesis from the permissive to the restrictive sequence, can independently confer on TAP a partial ability to transport peptides with arginine at the C terminus. The results suggest that the permissive TAP2-A allele evolved in at least two steps, each partially permissive for peptides with charged C termini.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011110 Polymorphism, Genetic The regular and simultaneous occurrence in a single interbreeding population of two or more discontinuous genotypes. The concept includes differences in genotypes ranging in size from a single nucleotide site (POLYMORPHISM, SINGLE NUCLEOTIDE) to large nucleotide sequences visible at a chromosomal level. Gene Polymorphism,Genetic Polymorphism,Polymorphism (Genetics),Genetic Polymorphisms,Gene Polymorphisms,Polymorphism, Gene,Polymorphisms (Genetics),Polymorphisms, Gene,Polymorphisms, Genetic
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D000071450 ATP Binding Cassette Transporter, Subfamily B, Member 3 ATP-binding cassette, subfamily B, protein that functions in the transport of ANTIGENS from the CYTOPLASM to the ENDOPLASMIC RETICULUM for association with HISTOCOMPATIBILITY ANTIGENS CLASS I peptides. It functions as a heterodimer with ATP BINDING CASSETTE TRANSPORTER, SUBFAMILY B, MEMBER 2. ABCB3 Protein,ATP Binding Cassette Transporter, Sub-Family B, Member 3,ATP-Binding Cassette, Sub-Family B, Member 3,Antigen Peptide Transporter-2,Peptide Supply Factor 2,Peptide Transporter Tap2,Antigen Peptide Transporter 2,Tap2, Peptide Transporter
D000483 Alleles Variant forms of the same gene, occupying the same locus on homologous CHROMOSOMES, and governing the variants in production of the same gene product. Allelomorphs,Allele,Allelomorph
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships
D013602 T-Lymphocytes, Cytotoxic Immunized T-lymphocytes which can directly destroy appropriate target cells. These cytotoxic lymphocytes may be generated in vitro in mixed lymphocyte cultures (MLC), in vivo during a graft-versus-host (GVH) reaction, or after immunization with an allograft, tumor cell or virally transformed or chemically modified target cell. The lytic phenomenon is sometimes referred to as cell-mediated lympholysis (CML). These CD8-positive cells are distinct from NATURAL KILLER CELLS and NATURAL KILLER T-CELLS. There are two effector phenotypes: TC1 and TC2. Cell-Mediated Lympholytic Cells,Cytotoxic T Cells,Cytotoxic T Lymphocyte,Cytotoxic T-Lymphocytes,TC1 Cell,TC1 Cells,TC2 Cell,TC2 Cells,Cell Mediated Lympholytic Cells,Cell, Cell-Mediated Lympholytic,Cell, TC1,Cell, TC2,Cell-Mediated Lympholytic Cell,Cytotoxic T Cell,Cytotoxic T Lymphocytes,Cytotoxic T-Lymphocyte,Lymphocyte, Cytotoxic T,Lympholytic Cell, Cell-Mediated,Lympholytic Cells, Cell-Mediated,T Cell, Cytotoxic,T Lymphocyte, Cytotoxic,T Lymphocytes, Cytotoxic,T-Lymphocyte, Cytotoxic
D016297 Mutagenesis, Site-Directed Genetically engineered MUTAGENESIS at a specific site in the DNA molecule that introduces a base substitution, or an insertion or deletion. Mutagenesis, Oligonucleotide-Directed,Mutagenesis, Site-Specific,Oligonucleotide-Directed Mutagenesis,Site-Directed Mutagenesis,Site-Specific Mutagenesis,Mutageneses, Oligonucleotide-Directed,Mutageneses, Site-Directed,Mutageneses, Site-Specific,Mutagenesis, Oligonucleotide Directed,Mutagenesis, Site Directed,Mutagenesis, Site Specific,Oligonucleotide Directed Mutagenesis,Oligonucleotide-Directed Mutageneses,Site Directed Mutagenesis,Site Specific Mutagenesis,Site-Directed Mutageneses,Site-Specific Mutageneses

Related Publications

E V Deverson, and L Leong, and A Seelig, and W J Coadwell, and E M Tredgett, and G W Butcher, and J C Howard
August 1999, The Journal of biological chemistry,
E V Deverson, and L Leong, and A Seelig, and W J Coadwell, and E M Tredgett, and G W Butcher, and J C Howard
July 2003, Biochemistry,
E V Deverson, and L Leong, and A Seelig, and W J Coadwell, and E M Tredgett, and G W Butcher, and J C Howard
October 1995, The Journal of biological chemistry,
E V Deverson, and L Leong, and A Seelig, and W J Coadwell, and E M Tredgett, and G W Butcher, and J C Howard
September 1997, Journal of immunology (Baltimore, Md. : 1950),
E V Deverson, and L Leong, and A Seelig, and W J Coadwell, and E M Tredgett, and G W Butcher, and J C Howard
July 1993, Journal of neurochemistry,
E V Deverson, and L Leong, and A Seelig, and W J Coadwell, and E M Tredgett, and G W Butcher, and J C Howard
January 2002, Biochimica et biophysica acta,
E V Deverson, and L Leong, and A Seelig, and W J Coadwell, and E M Tredgett, and G W Butcher, and J C Howard
March 2001, Journal of immunology (Baltimore, Md. : 1950),
E V Deverson, and L Leong, and A Seelig, and W J Coadwell, and E M Tredgett, and G W Butcher, and J C Howard
May 2005, Clinical cancer research : an official journal of the American Association for Cancer Research,
E V Deverson, and L Leong, and A Seelig, and W J Coadwell, and E M Tredgett, and G W Butcher, and J C Howard
January 2001, Immunologic research,
E V Deverson, and L Leong, and A Seelig, and W J Coadwell, and E M Tredgett, and G W Butcher, and J C Howard
January 1997, Advances in immunology,
Copied contents to your clipboard!