Prey specificity, comparative lethality and compositional differences of coral snake venoms. 2001

N Jorge da Silva, and S D Aird
Centro de Estudos e Pesquisas Biológicas, Departamento de Biologia, Universidade Católica de Goiás, Avenida Universitária, 1440-Setor Universitário, Goiânia, 74605-010, Goiás, Brazil.

Toxicities of crude venoms from 49 coral snake (Micrurus sp.) populations, representing 15 nominal taxa, were examined in both laboratory mice and in native prey animals and compared with data gathered from two non-micrurine elapids and a crotalid, which served as outgroups. These venoms were further compared on the basis of 23 enzymatic activities. Both toxicities and enzymatic activities were analyzed with respect to natural prey preferences, as determined from stomach content analyses and literature reports. Venoms of nearly all Micrurus for which prey preferences are known, are more toxic to natural prey than to non-prey species. Except for amphisbaenians, prey are more susceptible to venoms of Micrurus that feed upon them, than to venoms of those that eat other organisms. All venoms were more toxic i.v.>i.p.>i.m. Route-specific differences in toxicity are generally greatest for preferred prey species. Cluster analyses of venom enzymatic activities resulted in five clusters, with the fish-eating M. surinamensis more distant from other Micrurus than even the crotalid, Bothrops moojeni. Ophiophagous and amphisbaenian-eating Micrurus formed two close subclusters, one allied to the outgroup species Naja naja and the other to the fossorial, ophiophagous Bungarus multicinctus. Prey preference is shown to be the most important determinant of venom composition in Micrurus.

UI MeSH Term Description Entries
D007273 Injections, Intramuscular Forceful administration into a muscle of liquid medication, nutrient, or other fluid through a hollow needle piercing the muscle and any tissue covering it. Intramuscular Injections,Injection, Intramuscular,Intramuscular Injection
D007274 Injections, Intraperitoneal Forceful administration into the peritoneal cavity of liquid medication, nutrient, or other fluid through a hollow needle piercing the abdominal wall. Intraperitoneal Injections,Injection, Intraperitoneal,Intraperitoneal Injection
D007275 Injections, Intravenous Injections made into a vein for therapeutic or experimental purposes. Intravenous Injections,Injection, Intravenous,Intravenous Injection
D007928 Lethal Dose 50 The dose amount of poisonous or toxic substance or dose of ionizing radiation required to kill 50% of the tested population. LD50,Dose 50, Lethal
D009708 Nucleotidases A class of enzymes that catalyze the conversion of a nucleotide and water to a nucleoside and orthophosphate. EC 3.1.3.-.
D010450 Endopeptidases A subclass of PEPTIDE HYDROLASES that catalyze the internal cleavage of PEPTIDES or PROTEINS. Endopeptidase,Peptide Peptidohydrolases
D010802 Phylogeny The relationships of groups of organisms as reflected by their genetic makeup. Community Phylogenetics,Molecular Phylogenetics,Phylogenetic Analyses,Phylogenetic Analysis,Phylogenetic Clustering,Phylogenetic Comparative Analysis,Phylogenetic Comparative Methods,Phylogenetic Distance,Phylogenetic Generalized Least Squares,Phylogenetic Groups,Phylogenetic Incongruence,Phylogenetic Inference,Phylogenetic Networks,Phylogenetic Reconstruction,Phylogenetic Relatedness,Phylogenetic Relationships,Phylogenetic Signal,Phylogenetic Structure,Phylogenetic Tree,Phylogenetic Trees,Phylogenomics,Analyse, Phylogenetic,Analysis, Phylogenetic,Analysis, Phylogenetic Comparative,Clustering, Phylogenetic,Community Phylogenetic,Comparative Analysis, Phylogenetic,Comparative Method, Phylogenetic,Distance, Phylogenetic,Group, Phylogenetic,Incongruence, Phylogenetic,Inference, Phylogenetic,Method, Phylogenetic Comparative,Molecular Phylogenetic,Network, Phylogenetic,Phylogenetic Analyse,Phylogenetic Clusterings,Phylogenetic Comparative Analyses,Phylogenetic Comparative Method,Phylogenetic Distances,Phylogenetic Group,Phylogenetic Incongruences,Phylogenetic Inferences,Phylogenetic Network,Phylogenetic Reconstructions,Phylogenetic Relatednesses,Phylogenetic Relationship,Phylogenetic Signals,Phylogenetic Structures,Phylogenetic, Community,Phylogenetic, Molecular,Phylogenies,Phylogenomic,Reconstruction, Phylogenetic,Relatedness, Phylogenetic,Relationship, Phylogenetic,Signal, Phylogenetic,Structure, Phylogenetic,Tree, Phylogenetic
D003435 Crotalid Venoms Venoms from snakes of the subfamily Crotalinae or pit vipers, found mostly in the Americas. They include the rattlesnake, cottonmouth, fer-de-lance, bushmaster, and American copperhead. Their venoms contain nontoxic proteins, cardio-, hemo-, cyto-, and neurotoxins, and many enzymes, especially phospholipases A. Many of the toxins have been characterized. Bothrops Venom,Crotalidae Venoms,Pit Viper Venoms,Rattlesnake Venoms,Crotactin,Crotalid Venom,Crotalin,Crotaline Snake Venom,Crotalotoxin,Crotamin,Pit Viper Venom,Rattlesnake Venom,Snake Venom, Crotaline,Venom, Bothrops,Venom, Crotalid,Venom, Crotaline Snake,Venom, Pit Viper,Venom, Rattlesnake,Venoms, Crotalid,Venoms, Crotalidae,Venoms, Pit Viper,Venoms, Rattlesnake,Viper Venom, Pit
D004546 Elapid Venoms Venoms from snakes of the family Elapidae, including cobras, kraits, mambas, coral, tiger, and Australian snakes. The venoms contain polypeptide toxins of various kinds, cytolytic, hemolytic, and neurotoxic factors, but fewer enzymes than viper or crotalid venoms. Many of the toxins have been characterized. Cobra Venoms,Elapidae Venom,Elapidae Venoms,Naja Venoms,Cobra Venom,Elapid Venom,Hydrophid Venom,Hydrophid Venoms,King Cobra Venom,Naja Venom,Ophiophagus hannah Venom,Sea Snake Venom,Sea Snake Venoms,Venom, Cobra,Venom, Elapid,Venom, Elapidae,Venom, Hydrophid,Venom, King Cobra,Venom, Naja,Venom, Ophiophagus hannah,Venom, Sea Snake,Venoms, Cobra,Venoms, Elapid,Venoms, Elapidae,Venoms, Hydrophid,Venoms, Naja,Venoms, Sea Snake
D005766 Gastrointestinal Contents The contents included in all or any segment of the GASTROINTESTINAL TRACT. Digestive Tract Contents,Intestinal Contents,Stomach Contents,GI Contents,Digestive Tract Content,GI Content,Gastrointestinal Content,Intestinal Content,Stomach Content

Related Publications

N Jorge da Silva, and S D Aird
January 1974, Toxicon : official journal of the International Society on Toxinology,
N Jorge da Silva, and S D Aird
January 2017, Clinical toxicology (Philadelphia, Pa.),
N Jorge da Silva, and S D Aird
December 1964, Toxicon : official journal of the International Society on Toxinology,
N Jorge da Silva, and S D Aird
May 1970, Toxicon : official journal of the International Society on Toxinology,
N Jorge da Silva, and S D Aird
January 2005, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology,
N Jorge da Silva, and S D Aird
January 1980, Toxicon : official journal of the International Society on Toxinology,
N Jorge da Silva, and S D Aird
July 1971, The American journal of tropical medicine and hygiene,
N Jorge da Silva, and S D Aird
June 1980, Zhonghua Minguo wei sheng wu ji mian yi xue za zhi = Chinese journal of microbiology and immunology,
N Jorge da Silva, and S D Aird
January 1987, Revista do Instituto de Medicina Tropical de Sao Paulo,
Copied contents to your clipboard!