Down-regulation of Na-K-Cl cotransport by protein kinase C is mediated by protein phosphatase 1 in pigmented ciliary epithelial cells. 2001

J Layne, and S Yip, and R B Crook
Beckman Vision Center, Box 0730, University of California, San Francisco, San Francisco, CA 94143, USA.

The role of protein phosphatases in the regulation of Na-K-Cl cotransport was examined in human pigmented ciliary epithelial (PE) cells. Both a 37 kDa form and a 72 kDa form of protein phosphatase 1 (PP1) could be immunologically detected. The protein phosphatase inhibitor calyculin A stimulated Na-K-Cl cotransport by 89 +/- 12% at 10 n M, whereas okadaic acid had no effect at concentrations less than 100 n M. Calyculin A had no significant effect on either Na-K ATPase or ouabain-insensitive, bumetanide-insensitive 86Rb+uptake. These data suggest that PP1 plays a role in the inhibition of Na-K-Cl cotransport in PE cells. Treatment of cells with phorbol 12-myristate, 13-acetate (PMA), a protein kinase C (PKC) activator caused an 82% inhibition of Na-K-Cl cotransport. When cells were first treated for 5 min with PMA, 10 n M calyculin A stimulated Na-K-Cl cotransport by 53% compared to 101% by calyculin A alone. Treatment of cells with PMA after stimulation of Na-K-Cl cotransport by calyculin A resulted in a prompt 56% drop in cotransport activity. These data suggest that maximal inhibition of Na-K-Cl cotransport by PKC requires PP1 activity, but that a part of PKCs inhibitory effect is independent of PP1. The effect of PKC activation on PP1 was further examined by determining PP1 activity in cells pretreated with PMA. PP1 activity increased 38+/-8% in cells exposed to 1 microM PMA for 5 min. This stimulation was blocked by 100 n M staurosporine or 1 microM bisindolylmaleimide, two PKC inhibitors. An isomer which does not activate PKC (4 alpha phorbol didecanoate), did not stimulate PP1 activity. Thus PKC activation leads to an increase in PP1 activity in PE cells. Pretreatment of cells with the protein kinase A (PKA) inhibitor PHI 14-22 resulted in a partial reduction in calyculin A stimulation of cotransport, suggesting that PP1 and PKA function in a kinase-phosphatase regulatory loop. To determine whether other protein kinases might also be involved, several protein kinase inhibitors were tested, including KT5823 (protein kinase G, type II-specific), KN62 (calmodulin activated kinase-specific) and ML7 (myosin light chain kinase-specific). None prevented activation of Na-K-Cl cotransport by calyculin A, suggesting that these kinases are not involved in the activation of Na-K-Cl cotransport.

UI MeSH Term Description Entries
D007211 Indoles Benzopyrroles with the nitrogen at the number one carbon adjacent to the benzyl portion, in contrast to ISOINDOLES which have the nitrogen away from the six-membered ring.
D008301 Maleimides Derivatives of maleimide (the structural formula H2C2(CO)2NH) containing a pyrroledione ring where the hydrogen atom of the NH group is replaced with aliphatic or aromatic groups.
D008387 Marine Toxins Toxic or poisonous substances elaborated by marine flora or fauna. They include also specific, characterized poisons or toxins for which there is no more specific heading, like those from poisonous FISHES. Marine Biotoxins,Phycotoxins
D010080 Oxazoles Five-membered heterocyclic ring structures containing an oxygen in the 1-position and a nitrogen in the 3-position, in distinction from ISOXAZOLES where they are at the 1,2 positions. Oxazole,1,3-Oxazolium-5-Oxides,Munchnones,1,3 Oxazolium 5 Oxides
D010749 Phosphoprotein Phosphatases A group of enzymes removing the SERINE- or THREONINE-bound phosphate groups from a wide range of phosphoproteins, including a number of enzymes which have been phosphorylated under the action of a kinase. (Enzyme Nomenclature, 1992) Phosphoprotein Phosphatase,Phosphoprotein Phosphohydrolase,Protein Phosphatase,Protein Phosphatases,Casein Phosphatase,Ecto-Phosphoprotein Phosphatase,Nuclear Protein Phosphatase,Phosphohistone Phosphatase,Phosphoprotein Phosphatase-2C,Phosphoseryl-Protein Phosphatase,Protein Phosphatase C,Protein Phosphatase C-I,Protein Phosphatase C-II,Protein Phosphatase H-II,Protein-Serine-Threonine Phosphatase,Protein-Threonine Phosphatase,Serine-Threonine Phosphatase,Threonine Phosphatase,Ecto Phosphoprotein Phosphatase,Phosphatase C, Protein,Phosphatase C-I, Protein,Phosphatase C-II, Protein,Phosphatase H-II, Protein,Phosphatase, Casein,Phosphatase, Ecto-Phosphoprotein,Phosphatase, Nuclear Protein,Phosphatase, Phosphohistone,Phosphatase, Phosphoprotein,Phosphatase, Phosphoseryl-Protein,Phosphatase, Protein,Phosphatase, Protein-Serine-Threonine,Phosphatase, Protein-Threonine,Phosphatase, Serine-Threonine,Phosphatase, Threonine,Phosphatase-2C, Phosphoprotein,Phosphatases, Phosphoprotein,Phosphatases, Protein,Phosphohydrolase, Phosphoprotein,Phosphoprotein Phosphatase 2C,Phosphoseryl Protein Phosphatase,Protein Phosphatase C I,Protein Phosphatase C II,Protein Phosphatase H II,Protein Phosphatase, Nuclear,Protein Serine Threonine Phosphatase,Protein Threonine Phosphatase,Serine Threonine Phosphatase
D010857 Pigment Epithelium of Eye The layer of pigment-containing epithelial cells in the RETINA; the CILIARY BODY; and the IRIS in the eye. Eye Pigment Epithelium
D011493 Protein Kinase C An serine-threonine protein kinase that requires the presence of physiological concentrations of CALCIUM and membrane PHOSPHOLIPIDS. The additional presence of DIACYLGLYCEROLS markedly increases its sensitivity to both calcium and phospholipids. The sensitivity of the enzyme can also be increased by PHORBOL ESTERS and it is believed that protein kinase C is the receptor protein of tumor-promoting phorbol esters. Calcium Phospholipid-Dependent Protein Kinase,Calcium-Activated Phospholipid-Dependent Kinase,PKC Serine-Threonine Kinase,Phospholipid-Sensitive Calcium-Dependent Protein Kinase,Protein Kinase M,Calcium Activated Phospholipid Dependent Kinase,Calcium Phospholipid Dependent Protein Kinase,PKC Serine Threonine Kinase,Phospholipid Sensitive Calcium Dependent Protein Kinase,Phospholipid-Dependent Kinase, Calcium-Activated,Serine-Threonine Kinase, PKC
D002273 Carcinogens Substances that increase the risk of NEOPLASMS in humans or animals. Both genotoxic chemicals, which affect DNA directly, and nongenotoxic chemicals, which induce neoplasms by other mechanism, are included. Carcinogen,Oncogen,Oncogens,Tumor Initiator,Tumor Initiators,Tumor Promoter,Tumor Promoters,Initiator, Tumor,Initiators, Tumor,Promoter, Tumor,Promoters, Tumor
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002924 Ciliary Body A ring of tissue extending from the scleral spur to the ora serrata of the RETINA. It consists of the uveal portion and the epithelial portion. The ciliary muscle is in the uveal portion and the ciliary processes are in the epithelial portion. Corpus Ciliare,Corpus Ciliaris,Bodies, Ciliary,Body, Ciliary,Ciliare, Corpus,Ciliares, Corpus,Ciliari, Corpus,Ciliaris, Corpus,Ciliary Bodies,Corpus Ciliares,Corpus Ciliari

Related Publications

J Layne, and S Yip, and R B Crook
December 1993, Experimental eye research,
J Layne, and S Yip, and R B Crook
May 1996, Investigative ophthalmology & visual science,
J Layne, and S Yip, and R B Crook
March 1994, The Journal of biological chemistry,
J Layne, and S Yip, and R B Crook
March 1996, Nihon rinsho. Japanese journal of clinical medicine,
J Layne, and S Yip, and R B Crook
January 1993, The American journal of physiology,
J Layne, and S Yip, and R B Crook
January 1989, The American journal of physiology,
J Layne, and S Yip, and R B Crook
January 1993, The American journal of physiology,
J Layne, and S Yip, and R B Crook
December 1995, The American journal of physiology,
Copied contents to your clipboard!