Epidermal growth factor (EGF) receptor kinase-independent signaling by EGF. 2001

T B Deb, and L Su, and L Wong, and E Bonvini, and A Wells, and M David, and G R Johnson
Divisions of Therapeutic Proteins, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892, USA.

The ErbB family of receptors, which includes the epidermal growth factor receptor (EGFR), ErbB2, ErbB3, and ErbB4, mediate signaling by EGF-like polypeptides. To better understand the role of the EGFR tyrosine kinase, we analyzed signaling by a kinase-inactive EGFR (K721M) in ErbB-devoid 32D cells. K721M alone exhibited no detectable signaling capacity, whereas coexpression of K721M with ErbB2, but not ErbB3 or ErbB4, resulted in EGF-dependent mitogen-activated protein kinase (MAPK) activation. The kinase activity, but not tyrosine phosphorylation, of ErbB2 was required for EGF-induced MAPK activation. The presence of tyrosine phosphorylation sites in K721M was not a requisite for signaling, indicating that transphosphorylation of K721M by ErbB2 was not an essential mechanism of receptor activation. Conversely, the mutated kinase domain of K721M (residues 648-973) and tyrosine phosphorylation of at least one of the receptors were necessary. EGF was found to activate the pro-survival protein kinase Akt in stable cell lines expressing K721M and ErbB2 but, unlike cells expressing wild-type EGFR, was incapable of activating signal transducers and activators of transcription (STAT) or driving cell proliferation. These results demonstrate that EGFR-ErbB2 oligomers are potent activators of MAPK and Akt, and this signaling does not require EGFR kinase activity.

UI MeSH Term Description Entries
D007377 Interleukin-3 A multilineage cell growth factor secreted by LYMPHOCYTES; EPITHELIAL CELLS; and ASTROCYTES which stimulates clonal proliferation and differentiation of various types of blood and tissue cells. Burst-Promoting Factor, Erythrocyte,Colony-Stimulating Factor 2 Alpha,Colony-Stimulating Factor, Mast-Cell,Colony-Stimulating Factor, Multipotential,Erythrocyte Burst-Promoting Factor,IL-3,Mast-Cell Colony-Stimulating Factor,Multipotential Colony-Stimulating Factor,P-Cell Stimulating Factor,Eosinophil-Mast Cell Growth-Factor,Hematopoietin-2,Burst Promoting Factor, Erythrocyte,Colony Stimulating Factor, Mast Cell,Colony Stimulating Factor, Multipotential,Eosinophil Mast Cell Growth Factor,Erythrocyte Burst Promoting Factor,Hematopoietin 2,Interleukin 3,Multipotential Colony Stimulating Factor,P Cell Stimulating Factor
D007700 Kinetics The rate dynamics in chemical or physical systems.
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011518 Proto-Oncogene Proteins Products of proto-oncogenes. Normally they do not have oncogenic or transforming properties, but are involved in the regulation or differentiation of cell growth. They often have protein kinase activity. Cellular Proto-Oncogene Proteins,c-onc Proteins,Proto Oncogene Proteins, Cellular,Proto-Oncogene Products, Cellular,Cellular Proto Oncogene Proteins,Cellular Proto-Oncogene Products,Proto Oncogene Products, Cellular,Proto Oncogene Proteins,Proto-Oncogene Proteins, Cellular,c onc Proteins
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D004815 Epidermal Growth Factor A 6-kDa polypeptide growth factor initially discovered in mouse submaxillary glands. Human epidermal growth factor was originally isolated from urine based on its ability to inhibit gastric secretion and called urogastrone. Epidermal growth factor exerts a wide variety of biological effects including the promotion of proliferation and differentiation of mesenchymal and EPITHELIAL CELLS. It is synthesized as a transmembrane protein which can be cleaved to release a soluble active form. EGF,Epidermal Growth Factor-Urogastrone,Urogastrone,Human Urinary Gastric Inhibitor,beta-Urogastrone,Growth Factor, Epidermal,Growth Factor-Urogastrone, Epidermal,beta Urogastrone
D014157 Transcription Factors Endogenous substances, usually proteins, which are effective in the initiation, stimulation, or termination of the genetic transcription process. Transcription Factor,Factor, Transcription,Factors, Transcription
D014443 Tyrosine A non-essential amino acid. In animals it is synthesized from PHENYLALANINE. It is also the precursor of EPINEPHRINE; THYROID HORMONES; and melanin. L-Tyrosine,Tyrosine, L-isomer,para-Tyrosine,L Tyrosine,Tyrosine, L isomer,para Tyrosine
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal

Related Publications

T B Deb, and L Su, and L Wong, and E Bonvini, and A Wells, and M David, and G R Johnson
October 2015, Oncogene,
T B Deb, and L Su, and L Wong, and E Bonvini, and A Wells, and M David, and G R Johnson
September 2004, Endocrinology,
T B Deb, and L Su, and L Wong, and E Bonvini, and A Wells, and M David, and G R Johnson
April 1986, The Journal of biological chemistry,
T B Deb, and L Su, and L Wong, and E Bonvini, and A Wells, and M David, and G R Johnson
January 1997, British journal of urology,
T B Deb, and L Su, and L Wong, and E Bonvini, and A Wells, and M David, and G R Johnson
May 2017, The Journal of endocrinology,
T B Deb, and L Su, and L Wong, and E Bonvini, and A Wells, and M David, and G R Johnson
August 2018, The Journal of biological chemistry,
T B Deb, and L Su, and L Wong, and E Bonvini, and A Wells, and M David, and G R Johnson
October 1993, Biochemical pharmacology,
T B Deb, and L Su, and L Wong, and E Bonvini, and A Wells, and M David, and G R Johnson
July 1992, Biophysical journal,
Copied contents to your clipboard!