Epidermal growth factor (EGF) activates nuclear factor-kappaB through IkappaBalpha kinase-independent but EGF receptor-kinase dependent tyrosine 42 phosphorylation of IkappaBalpha. 2007

G Sethi, and K S Ahn, and M M Chaturvedi, and B B Aggarwal
Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.

Overexpression of epidermal growth factor (EGF) receptor and constitutive activation of nuclear factor-kappaB (NF-kappaB) are frequently encountered in tumor cells. Although EGF has been shown to induce NF-kappaB activation, the mechanism is poorly understood. EGF activated NF-kappaB DNA binding, induced NF-kappaB reporter activity and the expression of antiapoptotic and cell-proliferative gene products. Interestingly, non-small cell lung adenocarcinoma cell lines (HCC827 and H3255), which exhibit EGFR amplification, showed ligand-independent activation of NF-kappaB. Unlike tumor-necrosis factor (TNF), however, EGF failed to induce IkappaBalpha phosphorylation and ubiquitination and the activation of IkappaBalpha kinase (IKK). Although DN-IKKbeta inhibited TNF-induced NF-kappaB activity, DN-IKKbeta had no effect on EGF-induced NF-kappaB activation, suggesting that EGF-induced NF-kappaB activation is IKK independent. Using dominant-negative plasmids, we also demonstrated the role of TRADD, TRAF2, NIK and Ras in EGF-induced NF-kappaB activation. By using specific antibodies and IkappaBalpha plasmid, which is mutated at tyrosine 42 to phenylalanine, we show that EGF induced the tyrosine phosphorylation of IkappaBalpha at residue 42. Furthermore, EGF receptor kinase inhibitor blocked IkappaBalpha phosphorylation and consequent NF-kappaB activation. Overall, our results indicate that tyrosine phosphorylation of IkappaBalpha at residue 42 is critical for EGF-induced NF-kappaB activation pathway.

UI MeSH Term Description Entries
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D002289 Carcinoma, Non-Small-Cell Lung A heterogeneous aggregate of at least three distinct histological types of lung cancer, including SQUAMOUS CELL CARCINOMA; ADENOCARCINOMA; and LARGE CELL CARCINOMA. They are dealt with collectively because of their shared treatment strategy. Carcinoma, Non-Small Cell Lung,Non-Small Cell Lung Cancer,Non-Small Cell Lung Carcinoma,Non-Small-Cell Lung Carcinoma,Nonsmall Cell Lung Cancer,Carcinoma, Non Small Cell Lung,Carcinomas, Non-Small-Cell Lung,Lung Carcinoma, Non-Small-Cell,Lung Carcinomas, Non-Small-Cell,Non Small Cell Lung Carcinoma,Non-Small-Cell Lung Carcinomas
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D004815 Epidermal Growth Factor A 6-kDa polypeptide growth factor initially discovered in mouse submaxillary glands. Human epidermal growth factor was originally isolated from urine based on its ability to inhibit gastric secretion and called urogastrone. Epidermal growth factor exerts a wide variety of biological effects including the promotion of proliferation and differentiation of mesenchymal and EPITHELIAL CELLS. It is synthesized as a transmembrane protein which can be cleaved to release a soluble active form. EGF,Epidermal Growth Factor-Urogastrone,Urogastrone,Human Urinary Gastric Inhibitor,beta-Urogastrone,Growth Factor, Epidermal,Growth Factor-Urogastrone, Epidermal,beta Urogastrone
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000230 Adenocarcinoma A malignant epithelial tumor with a glandular organization. Adenocarcinoma, Basal Cell,Adenocarcinoma, Granular Cell,Adenocarcinoma, Oxyphilic,Adenocarcinoma, Tubular,Adenoma, Malignant,Carcinoma, Cribriform,Carcinoma, Granular Cell,Carcinoma, Tubular,Adenocarcinomas,Adenocarcinomas, Basal Cell,Adenocarcinomas, Granular Cell,Adenocarcinomas, Oxyphilic,Adenocarcinomas, Tubular,Adenomas, Malignant,Basal Cell Adenocarcinoma,Basal Cell Adenocarcinomas,Carcinomas, Cribriform,Carcinomas, Granular Cell,Carcinomas, Tubular,Cribriform Carcinoma,Cribriform Carcinomas,Granular Cell Adenocarcinoma,Granular Cell Adenocarcinomas,Granular Cell Carcinoma,Granular Cell Carcinomas,Malignant Adenoma,Malignant Adenomas,Oxyphilic Adenocarcinoma,Oxyphilic Adenocarcinomas,Tubular Adenocarcinoma,Tubular Adenocarcinomas,Tubular Carcinoma,Tubular Carcinomas
D014409 Tumor Necrosis Factor-alpha Serum glycoprotein produced by activated MACROPHAGES and other mammalian MONONUCLEAR LEUKOCYTES. It has necrotizing activity against tumor cell lines and increases ability to reject tumor transplants. Also known as TNF-alpha, it is only 30% homologous to TNF-beta (LYMPHOTOXIN), but they share TNF RECEPTORS. Cachectin,TNF-alpha,Tumor Necrosis Factor Ligand Superfamily Member 2,Cachectin-Tumor Necrosis Factor,TNF Superfamily, Member 2,TNFalpha,Tumor Necrosis Factor,Cachectin Tumor Necrosis Factor,Tumor Necrosis Factor alpha
D014443 Tyrosine A non-essential amino acid. In animals it is synthesized from PHENYLALANINE. It is also the precursor of EPINEPHRINE; THYROID HORMONES; and melanin. L-Tyrosine,Tyrosine, L-isomer,para-Tyrosine,L Tyrosine,Tyrosine, L isomer,para Tyrosine
D016328 NF-kappa B Ubiquitous, inducible, nuclear transcriptional activator that binds to enhancer elements in many different cell types and is activated by pathogenic stimuli. The NF-kappa B complex is a heterodimer composed of two DNA-binding subunits: NF-kappa B1 and relA. Immunoglobulin Enhancer-Binding Protein,NF-kappa B Complex,Nuclear Factor kappa B,Transcription Factor NF-kB,kappa B Enhancer Binding Protein,Ig-EBP-1,NF-kB,NF-kappaB,Nuclear Factor-Kappab,Complex, NF-kappa B,Enhancer-Binding Protein, Immunoglobulin,Factor NF-kB, Transcription,Factor-Kappab, Nuclear,Ig EBP 1,Immunoglobulin Enhancer Binding Protein,NF kB,NF kappa B Complex,NF kappaB,NF-kB, Transcription Factor,Nuclear Factor Kappab,Transcription Factor NF kB

Related Publications

G Sethi, and K S Ahn, and M M Chaturvedi, and B B Aggarwal
May 2001, The Journal of biological chemistry,
G Sethi, and K S Ahn, and M M Chaturvedi, and B B Aggarwal
July 2012, Biochimica et biophysica acta,
G Sethi, and K S Ahn, and M M Chaturvedi, and B B Aggarwal
April 1996, The Journal of biological chemistry,
G Sethi, and K S Ahn, and M M Chaturvedi, and B B Aggarwal
January 1991, The Journal of biological chemistry,
G Sethi, and K S Ahn, and M M Chaturvedi, and B B Aggarwal
January 1997, The Journal of biological chemistry,
G Sethi, and K S Ahn, and M M Chaturvedi, and B B Aggarwal
September 1994, European journal of biochemistry,
G Sethi, and K S Ahn, and M M Chaturvedi, and B B Aggarwal
November 2009, Anti-cancer drugs,
G Sethi, and K S Ahn, and M M Chaturvedi, and B B Aggarwal
February 2001, The Journal of cell biology,
G Sethi, and K S Ahn, and M M Chaturvedi, and B B Aggarwal
September 1995, Annals of the New York Academy of Sciences,
Copied contents to your clipboard!