Vasodilatation, oxygen delivery and oxygen consumption in rat hindlimb during systemic hypoxia: roles of nitric oxide. 2001

N J Edmunds, and J M Marshall
Department of Physiology, The Medical School, University of Birmingham, Vincent Drive, Birmingham B15 2TT, UK. n.j.edmunds@bham.ac.uk

We have investigated the relationship between O2 delivery (DO2) and O2 consumption (VO2) in hindlimb muscle of anaesthetised rats during progressive systemic hypoxia. Since muscle vasodilatation that occurs during hypoxia is nitric oxide (NO) dependent, we examined the effects of the NO synthase (NOS) inhibitor nitro-L-arginine methyl ester (L-NAME). In control rats (n = 8), femoral vascular conductance (FVC) increased at each level of hypoxia. Hindlimb DO2 decreased with the severity of hypoxia, but muscle VO2 was maintained until the critical DO2 value (DO2,crit) was reached at 0.64 +/- 0.06 ml O2 min-1 kg-1; below this VO2 declined linearly with DO2. This is a novel finding for the rat but is comparable to the biphasic relationship seen in the dog. In another group of rats (n = 6), L-NAME caused hindlimb vasoconstriction and attenuated the hypoxia-evoked increases in FVC DO2 was so low after L-NAME administration that VO2 was dependent on DO2 at all levels of hypoxia. In a further group (n = 8), femoral blood flow and DO2 were restored after L-NAME by infusion of the NO donor sodium nitroprusside (20 g x kg(-1) x min(-1). Thereafter, hypoxia-evoked increases in FVC were fully restored. Nevertheless, DO2,crit was increased relative to control (0.96 +/- 0.07 ml O2 min(-1) x kg(-1), P < 0.01). As NOS inhibition limited the ability of muscle to maintain VO2 during hypoxia, we propose that hypoxia-induced dilatation of terminal arterioles, which improves tissue O2 distribution, is mediated by NO. However, since the hypoxia-evoked increase in FVC was blocked by L-NAME but restored by the NO donor, we propose that the dilatation of proximal arterioles is dependent on tonic levels of NO, rather than mediated by NO.

UI MeSH Term Description Entries
D008297 Male Males
D009569 Nitric Oxide A free radical gas produced endogenously by a variety of mammalian cells, synthesized from ARGININE by NITRIC OXIDE SYNTHASE. Nitric oxide is one of the ENDOTHELIUM-DEPENDENT RELAXING FACTORS released by the vascular endothelium and mediates VASODILATION. It also inhibits platelet aggregation, induces disaggregation of aggregated platelets, and inhibits platelet adhesion to the vascular endothelium. Nitric oxide activates cytosolic GUANYLATE CYCLASE and thus elevates intracellular levels of CYCLIC GMP. Endogenous Nitrate Vasodilator,Mononitrogen Monoxide,Nitric Oxide, Endothelium-Derived,Nitrogen Monoxide,Endothelium-Derived Nitric Oxide,Monoxide, Mononitrogen,Monoxide, Nitrogen,Nitrate Vasodilator, Endogenous,Nitric Oxide, Endothelium Derived,Oxide, Nitric,Vasodilator, Endogenous Nitrate
D010100 Oxygen An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration. Dioxygen,Oxygen-16,Oxygen 16
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D012039 Regional Blood Flow The flow of BLOOD through or around an organ or region of the body. Blood Flow, Regional,Blood Flows, Regional,Flow, Regional Blood,Flows, Regional Blood,Regional Blood Flows
D001794 Blood Pressure PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS. Systolic Pressure,Diastolic Pressure,Pulse Pressure,Pressure, Blood,Pressure, Diastolic,Pressure, Pulse,Pressure, Systolic,Pressures, Systolic
D004791 Enzyme Inhibitors Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction. Enzyme Inhibitor,Inhibitor, Enzyme,Inhibitors, Enzyme
D006614 Hindlimb Either of two extremities of four-footed non-primate land animals. It usually consists of a FEMUR; TIBIA; and FIBULA; tarsals; METATARSALS; and TOES. (From Storer et al., General Zoology, 6th ed, p73) Hindlimbs
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000860 Hypoxia Sub-optimal OXYGEN levels in the ambient air of living organisms. Anoxia,Oxygen Deficiency,Anoxemia,Deficiency, Oxygen,Hypoxemia,Deficiencies, Oxygen,Oxygen Deficiencies

Related Publications

N J Edmunds, and J M Marshall
February 2005, American journal of physiology. Heart and circulatory physiology,
N J Edmunds, and J M Marshall
November 2005, Free radical biology & medicine,
N J Edmunds, and J M Marshall
April 1994, Cardiovascular research,
N J Edmunds, and J M Marshall
August 1994, Journal of applied physiology (Bethesda, Md. : 1985),
N J Edmunds, and J M Marshall
April 2006, Journal of applied physiology (Bethesda, Md. : 1985),
N J Edmunds, and J M Marshall
January 1994, The Japanese journal of physiology,
N J Edmunds, and J M Marshall
February 2014, Nitric oxide : biology and chemistry,
Copied contents to your clipboard!