Systemic and diaphragmatic oxygen delivery-consumption relationships during hemorrhage. 1994

M E Ward, and H Chang, and F Erice, and S N Hussain
Division of Pulmonary Medicine, Royal Victoria Hospital, Montreal, Quebec, Canada.

When tissue O2 delivery falls below a critical threshold, tissue O2 uptake (VO2) becomes limited. We compared critical O2 delivery and critical and maximum O2 extraction ratios of the resting and contracting left hemidiaphragm with those of nondiaphragmatic tissues in seven dogs. The left hemidiaphragm was perfused through the left inferior phrenic artery with blood from the left femoral artery. Phrenic venous blood was sampled through a catheter in the inferior phrenic vein. Systemic O2 delivery was reduced in stages by controlled hemorrhage. Left diaphragmatic VO2 during rest and during 3 min of continuous stimulation (3 Hz) of the left phrenic nerve and VO2 of the remaining nonleft hemidiaphragmatic tissues were measured at each stage. Critical diaphragmatic O2 delivery for the resting diaphragm averaged 0.8 +/- 0.16 ml.min-1.100 g-1 with a critical O2 extraction ratio of 65.5 +/- 6%. In the contracting diaphragm, they averaged 5.1 +/- 0.9 ml.min-1.100 g-1 and 81 +/- 5%, respectively. Whole body O2 delivery at which resting diaphragmatic VO2 became supply limited was similar to that for nondiaphragmatic tissues. By comparison, supply limitation of VO2 occurred at a higher systemic O2 delivery in the contracting diaphragm than in the rest of the body despite the increase in critical diaphragmatic extraction ratio. Thus, oxygenation of the isolated diaphragm does not appear to be preferentially preserved during generalized reductions in O2 delivery. These results suggest that, in diseases associated with increased work of breathing and decreased O2 delivery, the diaphragm may become metabolically impaired before limitation of VO2 is observed systemically.

UI MeSH Term Description Entries
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D010791 Phrenic Nerve The motor nerve of the diaphragm. The phrenic nerve fibers originate in the cervical spinal column (mostly C4) and travel through the cervical plexus to the diaphragm. Nerve, Phrenic,Nerves, Phrenic,Phrenic Nerves
D012039 Regional Blood Flow The flow of BLOOD through or around an organ or region of the body. Blood Flow, Regional,Blood Flows, Regional,Flow, Regional Blood,Flows, Regional Blood,Regional Blood Flows
D001784 Blood Gas Analysis Measurement of oxygen and carbon dioxide in the blood. Analysis, Blood Gas,Analyses, Blood Gas,Blood Gas Analyses,Gas Analyses, Blood,Gas Analysis, Blood
D001794 Blood Pressure PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS. Systolic Pressure,Diastolic Pressure,Pulse Pressure,Pressure, Blood,Pressure, Diastolic,Pressure, Pulse,Pressure, Systolic,Pressures, Systolic
D003964 Diaphragm The musculofibrous partition that separates the THORACIC CAVITY from the ABDOMINAL CAVITY. Contraction of the diaphragm increases the volume of the thoracic cavity aiding INHALATION. Respiratory Diaphragm,Diaphragm, Respiratory,Diaphragms,Diaphragms, Respiratory,Respiratory Diaphragms
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D006454 Hemoglobins The oxygen-carrying proteins of ERYTHROCYTES. They are found in all vertebrates and some invertebrates. The number of globin subunits in the hemoglobin quaternary structure differs between species. Structures range from monomeric to a variety of multimeric arrangements. Eryhem,Ferrous Hemoglobin,Hemoglobin,Hemoglobin, Ferrous

Related Publications

M E Ward, and H Chang, and F Erice, and S N Hussain
July 1995, Critical care medicine,
M E Ward, and H Chang, and F Erice, and S N Hussain
November 2001, The Journal of physiology,
M E Ward, and H Chang, and F Erice, and S N Hussain
June 1996, Clinics in chest medicine,
M E Ward, and H Chang, and F Erice, and S N Hussain
September 2001, Intensive care medicine,
M E Ward, and H Chang, and F Erice, and S N Hussain
April 2001, The Journal of physiology,
M E Ward, and H Chang, and F Erice, and S N Hussain
September 1996, The Journal of trauma,
M E Ward, and H Chang, and F Erice, and S N Hussain
August 1993, Anaesthesia,
M E Ward, and H Chang, and F Erice, and S N Hussain
February 1995, The Journal of veterinary medical science,
M E Ward, and H Chang, and F Erice, and S N Hussain
February 2010, Revista medica de Chile,
M E Ward, and H Chang, and F Erice, and S N Hussain
March 1996, Journal of critical care,
Copied contents to your clipboard!