Effects of L-phenylalanine on acetylcholinesterase and Na(+), K(+)-ATPase activities in adult and aged rat brain. 2001

S Tsakiris
Department of Experimental Physiology, University of Athens, Medical School, P.O. Box 65257, GR-154 01 Athens, Greece. stsakir@cc.uoa.gr

The effect of different L-phenylalanine (Phe) concentrations (0.12-1.8 mM) on acetylcholinesterase (AChE), (Na(+), K(+))-ATPase and Mg(2+)-ATPase activities was investigated in homogenates of adult and aged rat whole brain at 37 degrees C. Adult and aged rat experiments were necessary in relation to phenylketonuria (PKU) since phenylketonuric patients usually discontinue their therapeutic special diet when they reach adulthood. Diet discontinuation results in the pathological increase of Phe concentration in plasma and consequently in brain. AChE activity in adult brain homogenates showed a decrease up to 18% (P<0.01) with 0.48--1.8 mM Phe preincubated for 1 h. Adult brain Na(+), K(+)-ATPase was stimulated by 30--35% (P<0.01) in the presence of 0.48--1.8 mM Phe. However, high Phe concentrations were not able to affect the activities of AChE and Na(+), K(+)-ATPase, when preincubated with aged brain homogenate for 3 h. Moreover, high Phe concentrations appeared unable to affect the activity of eel E. electricus pure AChE inhibited about 30% (P<0.001) by the free radical system H(2)O(2)/Fe(2+). Also, the antagonists of alpha- and beta-adrenergic receptors (phenoxybenzamine and propranolol, respectively) inhibited adult rat brain Na(+), K(+)-ATPase activity about 30--40% (P<0.01) and Phe was unable to change this action. It is suggested that: (a) The inhibitory effect of Phe on brain AChE and its stimulatory effect on brain Na(+), K(+)-ATPase are decreased with age; (b) These effects may be influenced by aging factors, such as free radical action and/or reduced density of alpha- and beta-adrenergic receptors in the tissue.

UI MeSH Term Description Entries
D008297 Male Males
D010643 Phenoxybenzamine An alpha-adrenergic antagonist with long duration of action. It has been used to treat hypertension and as a peripheral vasodilator. Dibenylene,Dibenyline,Dibenziran,Dibenzylin,Dibenzyline,Dibenzyran,Phenoxybenzamine Hydrochloride,Hydrochloride, Phenoxybenzamine
D010649 Phenylalanine An essential aromatic amino acid that is a precursor of MELANIN; DOPAMINE; noradrenalin (NOREPINEPHRINE), and THYROXINE. Endorphenyl,L-Phenylalanine,Phenylalanine, L-Isomer,L-Isomer Phenylalanine,Phenylalanine, L Isomer
D011433 Propranolol A widely used non-cardioselective beta-adrenergic antagonist. Propranolol has been used for MYOCARDIAL INFARCTION; ARRHYTHMIA; ANGINA PECTORIS; HYPERTENSION; HYPERTHYROIDISM; MIGRAINE; PHEOCHROMOCYTOMA; and ANXIETY but adverse effects instigate replacement by newer drugs. Dexpropranolol,AY-20694,Anaprilin,Anapriline,Avlocardyl,Betadren,Dociton,Inderal,Obsidan,Obzidan,Propanolol,Propranolol Hydrochloride,Rexigen,AY 20694,AY20694,Hydrochloride, Propranolol
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D004524 Eels Common name for an order (Anguilliformes) of voracious, elongate, snakelike teleost fishes. Anguilliformes,Eel
D005260 Female Females
D000110 Acetylcholinesterase An enzyme that catalyzes the hydrolysis of ACETYLCHOLINE to CHOLINE and acetate. In the CNS, this enzyme plays a role in the function of peripheral neuromuscular junctions. EC 3.1.1.7. Acetylcholine Hydrolase,Acetylthiocholinesterase,Hydrolase, Acetylcholine
D000254 Sodium-Potassium-Exchanging ATPase An enzyme that catalyzes the active transport system of sodium and potassium ions across the cell wall. Sodium and potassium ions are closely coupled with membrane ATPase which undergoes phosphorylation and dephosphorylation, thereby providing energy for transport of these ions against concentration gradients. ATPase, Sodium, Potassium,Adenosinetriphosphatase, Sodium, Potassium,Na(+)-K(+)-Exchanging ATPase,Na(+)-K(+)-Transporting ATPase,Potassium Pump,Sodium Pump,Sodium, Potassium ATPase,Sodium, Potassium Adenosinetriphosphatase,Sodium-Potassium Pump,Adenosine Triphosphatase, Sodium, Potassium,Na(+) K(+)-Transporting ATPase,Sodium, Potassium Adenosine Triphosphatase,ATPase Sodium, Potassium,ATPase, Sodium-Potassium-Exchanging,Adenosinetriphosphatase Sodium, Potassium,Pump, Potassium,Pump, Sodium,Pump, Sodium-Potassium,Sodium Potassium Exchanging ATPase,Sodium Potassium Pump
D000317 Adrenergic alpha-Antagonists Drugs that bind to but do not activate alpha-adrenergic receptors thereby blocking the actions of endogenous or exogenous adrenergic agonists. Adrenergic alpha-antagonists are used in the treatment of hypertension, vasospasm, peripheral vascular disease, shock, and pheochromocytoma. Adrenergic alpha-Receptor Blockaders,alpha-Adrenergic Blocking Agents,alpha-Adrenergic Receptor Blockaders,alpha-Blockers, Adrenergic,Adrenergic alpha-Blockers,alpha-Adrenergic Antagonists,alpha-Adrenergic Blockers,Adrenergic alpha Antagonists,Adrenergic alpha Blockers,Adrenergic alpha Receptor Blockaders,Agents, alpha-Adrenergic Blocking,Antagonists, alpha-Adrenergic,Blockaders, Adrenergic alpha-Receptor,Blockaders, alpha-Adrenergic Receptor,Blockers, alpha-Adrenergic,Blocking Agents, alpha-Adrenergic,Receptor Blockaders, alpha-Adrenergic,alpha Adrenergic Antagonists,alpha Adrenergic Blockers,alpha Adrenergic Blocking Agents,alpha Adrenergic Receptor Blockaders,alpha Blockers, Adrenergic,alpha-Antagonists, Adrenergic,alpha-Receptor Blockaders, Adrenergic

Related Publications

Copied contents to your clipboard!