Effects of phenylalanine and its deaminated metabolites on Na+,K+-ATPase activity in synaptosomes from rat brain. 1982

A K Dwivedy, and S N Shah

The effects of phenylalanine (PHE) and its deaminated metabolites phenylpyruvate (PHP), phenyllactate (PHL) and phenylacetate (PHA) on sodium and potassium activated adenosinetriphosphatase (Na+,K+-ATPase) in synaptosomes from rat brain were investigated. At very low concentrations (5-10 microM). PHE, PHL and PHA inhibited the activity, while PHP stimulated the activity. At intermediate concentrations (50-100 microM), all compounds had no effect, but at higher (0.5-1.0 mM) concentrations they inhibited the enzyme activity. Thus all the compounds tested showed a biphasic effect on the enzyme activity. Hydroxylamine inhibited the Na+,K+-ATPase activity when present alone; simultaneous addition of hydroxylamine and PHE, however, eliminated the inhibitory effects of each other. Reversal of mutual inhibition also occurred in the presence of hydroxylamine and very low (5-10 microM) concentrations of PHL or PHA. The inhibitory effects of PHE at aLl concentrations, and of PHL or PHA at low concentrations, were also eliminated in the presence of EGTA. The data indicate that inhibition of brain membrane Na+,K+-ATPase by PHE and by low concentrations of PHL and PHA may involve metal ions, but that the inhibition by high concentrations of these metabolites must occur by a different mechanism. Since Na+,K+-ATPase plays a central role in neuronal function, and the presence of excess PHE and its deaminated metabolites occurs in brain tissue under conditions of experimentally induced hyperphenylalaninemia and genetic phenylketonuria, the neurologic impairment in experimental and genetic PKU may in part be related to the deleterious effects of these compounds on brain ATPase.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D007773 Lactates Salts or esters of LACTIC ACID containing the general formula CH3CHOHCOOR.
D008297 Male Males
D010648 Phenylacetates Derivatives of phenylacetic acid. Included under this heading are a variety of acid forms, salts, esters, and amides that contain the benzeneacetic acid structure. Note that this class of compounds should not be confused with derivatives of phenyl acetate, which contain the PHENOL ester of ACETIC ACID. Benzeneacetates,Benzeneacetic Acids,Phenylacetic Acids,Acids, Benzeneacetic,Acids, Phenylacetic
D010649 Phenylalanine An essential aromatic amino acid that is a precursor of MELANIN; DOPAMINE; noradrenalin (NOREPINEPHRINE), and THYROXINE. Endorphenyl,L-Phenylalanine,Phenylalanine, L-Isomer,L-Isomer Phenylalanine,Phenylalanine, L Isomer
D010667 Phenylpyruvic Acids A group of compounds that are derivatives of phenylpyruvic acid which has the general formula C6H5CH2COCOOH, and is a metabolite of phenylalanine. (From Dorland, 28th ed) Acids, Phenylpyruvic
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D005260 Female Females
D000254 Sodium-Potassium-Exchanging ATPase An enzyme that catalyzes the active transport system of sodium and potassium ions across the cell wall. Sodium and potassium ions are closely coupled with membrane ATPase which undergoes phosphorylation and dephosphorylation, thereby providing energy for transport of these ions against concentration gradients. ATPase, Sodium, Potassium,Adenosinetriphosphatase, Sodium, Potassium,Na(+)-K(+)-Exchanging ATPase,Na(+)-K(+)-Transporting ATPase,Potassium Pump,Sodium Pump,Sodium, Potassium ATPase,Sodium, Potassium Adenosinetriphosphatase,Sodium-Potassium Pump,Adenosine Triphosphatase, Sodium, Potassium,Na(+) K(+)-Transporting ATPase,Sodium, Potassium Adenosine Triphosphatase,ATPase Sodium, Potassium,ATPase, Sodium-Potassium-Exchanging,Adenosinetriphosphatase Sodium, Potassium,Pump, Potassium,Pump, Sodium,Pump, Sodium-Potassium,Sodium Potassium Exchanging ATPase,Sodium Potassium Pump

Related Publications

A K Dwivedy, and S N Shah
October 2001, American journal of physiology. Renal physiology,
A K Dwivedy, and S N Shah
December 1979, Biochemical pharmacology,
A K Dwivedy, and S N Shah
January 1998, Zeitschrift fur Naturforschung. C, Journal of biosciences,
A K Dwivedy, and S N Shah
April 1986, Cell biochemistry and function,
A K Dwivedy, and S N Shah
September 2003, Journal of inorganic biochemistry,
A K Dwivedy, and S N Shah
November 1977, Biochemical pharmacology,
Copied contents to your clipboard!