Minimal functional structure of Escherichia coli 4.5 S RNA required for binding to elongation factor G. 2001

K Nakamura, and H Miyamoto, and S Suzuma, and T Sakamoto, and G Kawai, and K Yamane
Institute of Biological Sciences, University of Tsukuba, Tsukuba-shi, Ibaraki 305-8572, Japan. nakamura.kouji@nifty.ne.jp

Escherichia coli cells contain abundant amounts of metabolically stable 4.5 S RNA. Consisting of 114 nucleotides, 4.5 S RNA is structurally homologous to mammalian 7 S RNA, and it plays an essential role in targeting proteins containing signal peptide to the secretory apparatus by forming an signal recognition-like particle with Ffh protein. It also binds independently to protein elongation factor G (EF-G) and functions in the translation process. This RNA contains a phylogenetically conserved RNA domain, the predicted secondary structure of which consists of a hairpin motif with two bulges. We examined the binding activity of mutants with systematic deletions to define the minimal functional interaction domain of 4.5 S RNA that interacts with EF-G. This domain consisted of 35-nucleotides extending from 36 to 70 nucleotides of mature 4.5 S RNA and contained two conserved bulges in which mutations of A47, A60, G61, C62, A63, and A67 diminished binding to EF-G, whereas those at A39, C40, C41, A42, G48, and G49 did not affect binding. These data suggested that the 10 nucleotides in 4.5 S RNA, which are conserved between 4.5 S RNA and 23 S rRNA, have a key role for EF-G binding. Based on the NMR-derived structure of mutant A47U, we further verified that substituting U at A47 causes striking structural changes and the loss of the symmetrical bulge. These results indicate the mechanism by which EF-G interacts with 4.5 S RNA and the importance of the bulge structure for EF-G binding.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012329 RNA, Bacterial Ribonucleic acid in bacteria having regulatory and catalytic roles as well as involvement in protein synthesis. Bacterial RNA
D012335 RNA, Ribosomal The most abundant form of RNA. Together with proteins, it forms the ribosomes, playing a structural role and also a role in ribosomal binding of mRNA and tRNAs. Individual chains are conventionally designated by their sedimentation coefficients. In eukaryotes, four large chains exist, synthesized in the nucleolus and constituting about 50% of the ribosome. (Dorland, 28th ed) Ribosomal RNA,15S RNA,RNA, 15S

Related Publications

K Nakamura, and H Miyamoto, and S Suzuma, and T Sakamoto, and G Kawai, and K Yamane
May 1996, The Journal of biological chemistry,
K Nakamura, and H Miyamoto, and S Suzuma, and T Sakamoto, and G Kawai, and K Yamane
January 1974, Methods in enzymology,
K Nakamura, and H Miyamoto, and S Suzuma, and T Sakamoto, and G Kawai, and K Yamane
July 1975, The Journal of biological chemistry,
K Nakamura, and H Miyamoto, and S Suzuma, and T Sakamoto, and G Kawai, and K Yamane
March 1980, Biochemistry,
K Nakamura, and H Miyamoto, and S Suzuma, and T Sakamoto, and G Kawai, and K Yamane
December 1982, FEBS letters,
K Nakamura, and H Miyamoto, and S Suzuma, and T Sakamoto, and G Kawai, and K Yamane
March 1976, The Journal of biological chemistry,
K Nakamura, and H Miyamoto, and S Suzuma, and T Sakamoto, and G Kawai, and K Yamane
September 1989, Journal of molecular biology,
K Nakamura, and H Miyamoto, and S Suzuma, and T Sakamoto, and G Kawai, and K Yamane
September 1984, Journal of molecular biology,
K Nakamura, and H Miyamoto, and S Suzuma, and T Sakamoto, and G Kawai, and K Yamane
September 1975, The Journal of biological chemistry,
K Nakamura, and H Miyamoto, and S Suzuma, and T Sakamoto, and G Kawai, and K Yamane
August 1975, Biochemistry,
Copied contents to your clipboard!