Time of action of 4.5 S RNA in Escherichia coli translation. 1989

S Brown
Fred Hutchinson Cancer Research Center, Seattle, WA 98104.

A new class of suppressor mutants helps to define the role of 4.5 S RNA in translation. The suppressors reduce the requirement for 4.5 S RNA by increasing the intracellular concentration of uncharged tRNA. Suppression probably occurs by prolonging the period in which translating ribosomes have translocated but not yet released the uncharged tRNA, indicating that this is the point at which 4.5 S RNA enters translation. The release of 4.5 S RNA from polysomes is affected by antibiotics that inhibit protein synthesis. The antibiotic-sensitivity of this release indicates that 4.5 S RNA exits the ribosome following translocation and prior to release of protein synthesis elongation factor G. These results indicate that 4.5 S RNA acts immediately after ribosomal translocation. A model is proposed in which 4.5 S RNA stabilizes the post-translocation state by replacing 23 S ribosomal RNA as a binding site for elongation factor G. The 4.5 S RNA-requirement of mutants altered in 23 S ribosomal RNA support this model.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D005975 Glutamate-tRNA Ligase An enzyme that activates glutamic acid with its specific transfer RNA. EC 6.1.1.17. Glutamyl T RNA Synthetase,Glu-tRNA Ligase,Glutamyl-tRNA Synthetase,Glu tRNA Ligase,Glutamate tRNA Ligase,Glutamyl tRNA Synthetase,Ligase, Glu-tRNA,Ligase, Glutamate-tRNA,Synthetase, Glutamyl-tRNA
D000900 Anti-Bacterial Agents Substances that inhibit the growth or reproduction of BACTERIA. Anti-Bacterial Agent,Anti-Bacterial Compound,Anti-Mycobacterial Agent,Antibacterial Agent,Antibiotics,Antimycobacterial Agent,Bacteriocidal Agent,Bacteriocide,Anti-Bacterial Compounds,Anti-Mycobacterial Agents,Antibacterial Agents,Antibiotic,Antimycobacterial Agents,Bacteriocidal Agents,Bacteriocides,Agent, Anti-Bacterial,Agent, Anti-Mycobacterial,Agent, Antibacterial,Agent, Antimycobacterial,Agent, Bacteriocidal,Agents, Anti-Bacterial,Agents, Anti-Mycobacterial,Agents, Antibacterial,Agents, Antimycobacterial,Agents, Bacteriocidal,Anti Bacterial Agent,Anti Bacterial Agents,Anti Bacterial Compound,Anti Bacterial Compounds,Anti Mycobacterial Agent,Anti Mycobacterial Agents,Compound, Anti-Bacterial,Compounds, Anti-Bacterial
D012329 RNA, Bacterial Ribonucleic acid in bacteria having regulatory and catalytic roles as well as involvement in protein synthesis. Bacterial RNA
D012335 RNA, Ribosomal The most abundant form of RNA. Together with proteins, it forms the ribosomes, playing a structural role and also a role in ribosomal binding of mRNA and tRNAs. Individual chains are conventionally designated by their sedimentation coefficients. In eukaryotes, four large chains exist, synthesized in the nucleolus and constituting about 50% of the ribosome. (Dorland, 28th ed) Ribosomal RNA,15S RNA,RNA, 15S
D012343 RNA, Transfer The small RNA molecules, 73-80 nucleotides long, that function during translation (TRANSLATION, GENETIC) to align AMINO ACIDS at the RIBOSOMES in a sequence determined by the mRNA (RNA, MESSENGER). There are about 30 different transfer RNAs. Each recognizes a specific CODON set on the mRNA through its own ANTICODON and as aminoacyl tRNAs (RNA, TRANSFER, AMINO ACYL), each carries a specific amino acid to the ribosome to add to the elongating peptide chains. Suppressor Transfer RNA,Transfer RNA,tRNA,RNA, Transfer, Suppressor,Transfer RNA, Suppressor,RNA, Suppressor Transfer
D012346 RNA, Transfer, Amino Acyl Intermediates in protein biosynthesis. The compounds are formed from amino acids, ATP and transfer RNA, a reaction catalyzed by aminoacyl tRNA synthetase. They are key compounds in the genetic translation process. Amino Acyl tRNA,Transfer RNA, Amino Acyl,tRNA-Amino Acyl,Amino Acyl T RNA,Acyl tRNA, Amino,Acyl, tRNA-Amino,tRNA Amino Acyl,tRNA, Amino Acyl
D013489 Suppression, Genetic Mutation process that restores the wild-type PHENOTYPE in an organism possessing a mutationally altered GENOTYPE. The second "suppressor" mutation may be on a different gene, on the same gene but located at a distance from the site of the primary mutation, or in extrachromosomal genes (EXTRACHROMOSOMAL INHERITANCE). Suppressor Mutation,Genetic Suppression,Genetic Suppressions,Mutation, Suppressor,Mutations, Suppressor,Suppressions, Genetic,Suppressor Mutations

Related Publications

S Brown
July 1975, The Journal of biological chemistry,
S Brown
September 1984, Journal of molecular biology,
S Brown
August 1963, Biochimica et biophysica acta,
S Brown
June 1969, Journal of molecular biology,
S Brown
January 1997, Nucleic acids symposium series,
S Brown
August 1968, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!