Niacin, poly(ADP-ribose) polymerase-1 and genomic stability. 2001

G J Hageman, and R H Stierum
Department of Health Risk Analysis and Toxicology, University of Maastricht, 6200 MD, Maastricht, The Netherlands. ghageman@grat@unimaas.nl

Nicotinic acid (NA) and nicotinamide (NAM), commonly called niacin, are the dietary precursors for NAD(+) (nicotinamide adenine dinucleotide), which is required for DNA synthesis, as well as for the activity of the enzyme poly(ADP-ribose) polymerase-1 (PARP-1; EC 2.4.2.30) for which NAD(+) is the sole substrate. The enzyme PARP-1 is highly activated by DNA strand breaks during the cellular genotoxic stress response, is involved in base excision repair, plays a role in p53 expression and activation, and hence, is thought to be important for genomic stability. In this review, first the absorption, metabolism of niacin to NAD(+), as well as the assessment of niacin status are discussed. Since NAD(+) is important for PARP-1 activity, various aspects of PARP-1 in relation to DNA synthesis and repair, and regulation of gene expression are addressed. This is followed by a discussion on interactions between dietary methyl donor deficiency, niacin status, PARP-1 activity and genomic stability. In vitro studies show that PARP-1 function is impaired and genomic stability decreased when cells are either depleted from NAD(+) or incubated with high concentrations of NAM which is a PARP-1 inhibitor. In vitro as well as animal studies indicate that niacin deficiency increases genomic instability especially in combination with genotoxic and oxidative stress. Niacin deficiency may also increase the risk for certain tumors. Preliminary data suggest that niacin supplementation may protect against UV-induced tumors of the skin in mice, but data on similar preventive effects in humans are not available. NAM has been shown in vitro to have an antioxidant activity comparable to that of ascorbic acid. Data on niacin status and genomic stability in vivo in humans are limited and yield ambiguous results. Therefore, no firm conclusions with respect to optimal niacin intake are possible. As a consequence of oral niacin supplementation, however, NAM levels in the body may increase, which may result in inhibition of PARP-1 and increased genomic instability. More studies are needed to define an optimal level of niacin nutriture in relation to genomic stability and tumorigenesis.

UI MeSH Term Description Entries
D009525 Niacin A water-soluble vitamin of the B complex occurring in various animal and plant tissues. It is required by the body for the formation of coenzymes NAD and NADP. It has PELLAGRA-curative, vasodilating, and antilipemic properties. Nicotinic Acid,3-Pyridinecarboxylic Acid,Enduracin,Induracin,Lithium Nicotinate,Niacin Aluminum Salt,Niacin Ammonium Salt,Niacin Calcium Salt,Niacin Cobalt (2+) Salt,Niacin Copper (2+) Salt,Niacin Hydrochloride,Niacin Iron (2+) Salt,Niacin Lithium Salt,Niacin Lithium Salt, Hemihydrate,Niacin Magnesium Salt,Niacin Manganese (2+) Salt,Niacin Potassium Salt,Niacin Sodium Salt,Niacin Tartrate,Niacin Tosylate,Niacin Zinc Salt,Nicamin,Nico-400,Nicobid,Nicocap,Nicolar,Nicotinate,Wampocap,3 Pyridinecarboxylic Acid,Aluminum Salt, Niacin,Hydrochloride, Niacin,Nico 400,Nico400,Nicotinate, Lithium,Potassium Salt, Niacin,Sodium Salt, Niacin,Tartrate, Niacin,Tosylate, Niacin
D011065 Poly(ADP-ribose) Polymerases Enzymes that catalyze the transfer of multiple ADP-RIBOSE groups from nicotinamide-adenine dinucleotide (NAD) onto protein targets, thus building up a linear or branched homopolymer of repeating ADP-ribose units i.e., POLY ADENOSINE DIPHOSPHATE RIBOSE. ADP-Ribosyltransferase (Polymerizing),Poly ADP Ribose Polymerase,Poly(ADP-Ribose) Synthase,Poly(ADP-ribose) Polymerase,PARP Polymerase,Poly ADP Ribose Transferase,Poly ADP-Ribose Synthase,Poly(ADP-Ribose) Transferase,Poly(ADPR) Polymerase,Poly(ADPribose) Polymerase,Poly ADP Ribose Synthase,Polymerase, PARP,Synthase, Poly ADP-Ribose
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004249 DNA Damage Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS. DNA Injury,DNA Lesion,DNA Lesions,Genotoxic Stress,Stress, Genotoxic,Injury, DNA,DNA Injuries
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

G J Hageman, and R H Stierum
November 2018, Hypertension (Dallas, Tex. : 1979),
G J Hageman, and R H Stierum
May 2010, Experimental biology and medicine (Maywood, N.J.),
G J Hageman, and R H Stierum
January 2007, Bioorganic & medicinal chemistry letters,
G J Hageman, and R H Stierum
January 2012, Bioorganic & medicinal chemistry letters,
G J Hageman, and R H Stierum
July 2010, Postepy higieny i medycyny doswiadczalnej (Online),
G J Hageman, and R H Stierum
August 2012, Molecular neurobiology,
G J Hageman, and R H Stierum
December 2010, Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer,
G J Hageman, and R H Stierum
June 2015, The Journal of pharmacology and experimental therapeutics,
G J Hageman, and R H Stierum
February 2003, Current medicinal chemistry,
Copied contents to your clipboard!