Morphology and cytochrome P450 isoforms expression in precision-cut rat liver slices. 2001

A Lupp, and M Danz, and D Müller
Institute of Pharmacology and Toxicology, Friedrich Schiller University Jena, Nonnenplan 4, D-07743, Jena, Germany. alup@mti-n.uni-jena.de

Precision-cut liver slices are a widely accepted in vitro system for the examination of drug metabolism, enzyme induction, or hepatotoxic effects of xenobiotics. The maintenance of the distinct lobular expression and induction pattern of phase I biotransformation enzymes, however, has not been examined systematically so far. Thus, in the present study, both longitudinal and transversal sections of male rat liver slices were investigated morphologically, as well as immunohistochemically for the expression of different cytochrome P450 (CYP) isoforms after prolonged incubation or after exposure to typical inducers. Histopathological examinations revealed an increasing vacuolization of the periportal hepatocytes mainly in the middle of the slices from 6 h of incubation on, paralleled by a loss of glycogen in the respective cells. After 24 h, mainly in the center of the slices, necroses of cells occurred. After 48 h of incubation, typically a central band of coagulative necrosis flanked by superficial layers of viable cells was observed. Freshly prepared slices displayed a CYP subtypes expression as normal liver specimen, a very low centrilobular CYP 1A1 immunostaining, but a strong CYP 2B1 and 3A2 expression predominantly in the central and intermediate lobular zones. From 2 h on, the immunostaining for CYP 2B1 and 3A2 was to some extent reduced. After 24 h of incubation with beta-naphthoflavone, the CYP 1A1 and 2B1 expression was induced mainly in the viable cells around central veins, around some portal fields with bigger vessels and in the cell layers close to the slice surface. At the same sites, phenobarbital led to an increased CYP 2B1 and 3A2 expression and dexamethasone to an elevated CYP 3A2 immunostaining. These results show, that an in vitro induction of phase I enzymes in precision-cut liver slices can be demonstrated also immunohistochemically.

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D010634 Phenobarbital A barbituric acid derivative that acts as a nonselective central nervous system depressant. It potentiates GAMMA-AMINOBUTYRIC ACID action on GABA-A RECEPTORS, and modulates chloride currents through receptor channels. It also inhibits glutamate induced depolarizations. Phenemal,Phenobarbitone,Phenylbarbital,Gardenal,Hysteps,Luminal,Phenobarbital Sodium,Phenobarbital, Monosodium Salt,Phenylethylbarbituric Acid,Acid, Phenylethylbarbituric,Monosodium Salt Phenobarbital,Sodium, Phenobarbital
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D003907 Dexamethasone An anti-inflammatory 9-fluoro-glucocorticoid. Hexadecadrol,Decaject,Decaject-L.A.,Decameth,Decaspray,Dexasone,Dexpak,Hexadrol,Maxidex,Methylfluorprednisolone,Millicorten,Oradexon,Decaject L.A.
D004790 Enzyme Induction An increase in the rate of synthesis of an enzyme due to the presence of an inducer which acts to derepress the gene responsible for enzyme synthesis. Induction, Enzyme
D004791 Enzyme Inhibitors Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction. Enzyme Inhibitor,Inhibitor, Enzyme,Inhibitors, Enzyme
D006003 Glycogen

Related Publications

A Lupp, and M Danz, and D Müller
September 1998, Experimental and toxicologic pathology : official journal of the Gesellschaft fur Toxikologische Pathologie,
A Lupp, and M Danz, and D Müller
August 2000, Toxicology,
A Lupp, and M Danz, and D Müller
March 1996, Xenobiotica; the fate of foreign compounds in biological systems,
A Lupp, and M Danz, and D Müller
March 2003, Drug metabolism and disposition: the biological fate of chemicals,
A Lupp, and M Danz, and D Müller
January 2015, Xenobiotica; the fate of foreign compounds in biological systems,
A Lupp, and M Danz, and D Müller
October 2000, Drug metabolism and disposition: the biological fate of chemicals,
A Lupp, and M Danz, and D Müller
September 1998, Experimental and toxicologic pathology : official journal of the Gesellschaft fur Toxikologische Pathologie,
A Lupp, and M Danz, and D Müller
November 1997, Xenobiotica; the fate of foreign compounds in biological systems,
Copied contents to your clipboard!