Neurotrophins act at presynaptic terminals to activate synapses among cultured hippocampal neurons. 2001

C Collin, and C Vicario-Abejon, and M E Rubio, and R J Wenthold, and R D McKay, and M Segal
Laboratory of Molecular Biology, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, Maryland 20892-4092, USA.

We have recently demonstrated that embryonic E16 hippocampal neurons grown in cultures are unable to form fast synaptic connections unless treated with BDNF or NT-3. This experimental system offers an opportunity to define the roles of neurotrophins in processes leading to formation of functional synaptic connections. We have used ultrastructural and electrophysiological methods to explore the cellular locations underlying neurotrophin action on synaptic maturation. The rate of spontaneous miniature excitatory postsynaptic currents (mEPSCs) evoked by hyperosmotic stimulation was 7-16-fold higher in neurotrophin-treated cells than in controls. In addition, the potent neurotransmitter-releasing drug alpha-latrotoxin was virtually ineffective in the control cells while it stimulated synaptic events in neurotrophin-treated cells. Likewise, the membrane-bound dye FM1-43 was taken up by terminals in neurotrophin-treated cultures five-fold more than in controls. Both the total number and the number of docked synaptic vesicles were increased by neurotrophin treatment. Activation of synaptic responses by neurotrophins occurred even when postsynaptic glutamate receptors and action potential discharges were pharmacologically blocked. These results are consistent with a presynaptic locus of action of neurotrophins to increase synaptic vesicle density which is critical for rapid synaptic transmission. They also suggest that neurotrophins can activate synapses in the absence of pre- and postsynaptic neuronal activity.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013111 Spider Venoms Venoms of arthropods of the order Araneida of the ARACHNIDA. The venoms usually contain several protein fractions, including ENZYMES, hemolytic, neurolytic, and other TOXINS, BIOLOGICAL. Araneid Venoms,Spider Toxin,Spider Toxins,Tarantula Toxin,Tarantula Toxins,Tarantula Venom,Araneid Venom,Spider Venom,Tarantula Venoms,Toxin, Spider,Toxin, Tarantula,Toxins, Spider,Toxins, Tarantula,Venom, Araneid,Venom, Spider,Venom, Tarantula,Venoms, Araneid,Venoms, Spider,Venoms, Tarantula
D013572 Synaptic Vesicles Membrane-bound compartments which contain transmitter molecules. Synaptic vesicles are concentrated at presynaptic terminals. They actively sequester transmitter molecules from the cytoplasm. In at least some synapses, transmitter release occurs by fusion of these vesicles with the presynaptic membrane, followed by exocytosis of their contents. Synaptic Vesicle,Vesicle, Synaptic,Vesicles, Synaptic
D013779 Tetrodotoxin An aminoperhydroquinazoline poison found mainly in the liver and ovaries of fishes in the order TETRAODONTIFORMES, which are eaten. The toxin causes paresthesia and paralysis through interference with neuromuscular conduction. Fugu Toxin,Tarichatoxin,Tetradotoxin,Toxin, Fugu
D015763 2-Amino-5-phosphonovalerate The D-enantiomer is a potent and specific antagonist of NMDA glutamate receptors (RECEPTORS, N-METHYL-D-ASPARTATE). The L form is inactive at NMDA receptors but may affect the AP4 (2-amino-4-phosphonobutyrate; APB) excitatory amino acid receptors. 2-Amino-5-phosphonopentanoic Acid,2-Amino-5-phosphonovaleric Acid,2-APV,2-Amino-5-phosphonopentanoate,5-Phosphononorvaline,d-APV,dl-APV,2 Amino 5 phosphonopentanoate,2 Amino 5 phosphonopentanoic Acid,2 Amino 5 phosphonovalerate,2 Amino 5 phosphonovaleric Acid,5 Phosphononorvaline

Related Publications

C Collin, and C Vicario-Abejon, and M E Rubio, and R J Wenthold, and R D McKay, and M Segal
March 1997, Brain research. Developmental brain research,
C Collin, and C Vicario-Abejon, and M E Rubio, and R J Wenthold, and R D McKay, and M Segal
October 2000, Cerebral cortex (New York, N.Y. : 1991),
C Collin, and C Vicario-Abejon, and M E Rubio, and R J Wenthold, and R D McKay, and M Segal
April 2010, Neuron,
C Collin, and C Vicario-Abejon, and M E Rubio, and R J Wenthold, and R D McKay, and M Segal
March 1990, The Journal of physiology,
C Collin, and C Vicario-Abejon, and M E Rubio, and R J Wenthold, and R D McKay, and M Segal
September 2001, Proceedings of the National Academy of Sciences of the United States of America,
C Collin, and C Vicario-Abejon, and M E Rubio, and R J Wenthold, and R D McKay, and M Segal
June 2006, Journal of neurochemistry,
C Collin, and C Vicario-Abejon, and M E Rubio, and R J Wenthold, and R D McKay, and M Segal
June 2000, The Journal of neuroscience : the official journal of the Society for Neuroscience,
C Collin, and C Vicario-Abejon, and M E Rubio, and R J Wenthold, and R D McKay, and M Segal
April 1996, Neuroscience letters,
C Collin, and C Vicario-Abejon, and M E Rubio, and R J Wenthold, and R D McKay, and M Segal
October 2004, The European journal of neuroscience,
C Collin, and C Vicario-Abejon, and M E Rubio, and R J Wenthold, and R D McKay, and M Segal
September 2006, The EMBO journal,
Copied contents to your clipboard!