Electrostatic steering and ionic tethering in the formation of thrombin-hirudin complexes: the role of the thrombin anion-binding exosite-I. 2001

T Myles, and B F Le Bonniec, and A Betz, and S R Stone
Department of Haematology, University of Cambridge, MRC Centre, Hills Road, Cambridge CB2 2QH, United Kingdom. tmyles@stanford.edu

Electrostatic interactions between the thrombin anion-binding exosite-I (ABE-I) and the hirudin C-terminal tail play an important role in the formation of the thrombin-hirudin inhibitor complex and serves as a model for the interactions of thrombin with its many other ligands. The role of each solvent exposed basic residue in ABE-I (Arg(35), Lys(36), Arg(67), Arg(73), Arg(75), Arg(77a), Lys(81), Lys(109), Lys(110), and Lys(149e)) in electrostatic steering and ionic tethering in the formation of thrombin-hirudin inhibitor complexes was explored by site directed mutagenesis. The contribution to the binding energy (deltaG(degrees)b) by each residue varied from 1.9 kJ mol(-)(1) (Lys(110)) to 15.3 kJ mol(-1) (Arg(73)) and were in general agreement to their observed interactions with hirudin residues in the thrombin-hirudin crystal structure [Rydel, T. J., Tulinsky, A., Bode, W., and Huber, R. (1991) J. Mol. Biol. 221, 583-601]. Coupling energies (delta deltaG(degrees) int) were calculated for the major ion-pair interactions involved in ionic tethering using complementary hirudin mutants (h-D55N, h-E57Q, and h-E58Q). Cooperativity was seen for the h-Asp(55)/Arg(73) ion pair (2.4 kJ mol(-1)); however, low coupling energies for h-Asp(55)/Lys(149e) (deltadeltaG(degrees)int 0.6 kJ mol(-1)) and h-Glu(58)/Arg(77a) (deltadeltaG(degrees)int 0.9 kJ mol(-1)) suggest these are not major interactions, as anticipated by the crystal structure. Interestingly, high coupling energies were seen for the intermolecular ion-pair h-Glu(57)/Arg(75) (deltadeltaG(degrees)int 2.3 kJ mol(-1)) and for the solvent bridge h-Glu(57)/Arg(77a) (deltadeltaG(degrees)int 2.7 kJ mol(-1)) indicating that h-Glu(57) interacts directly with both Arg(75) and Arg(77a) in the thrombin-hirudin inhibitor complex. The remaining ABE-I residues that do not form major contacts in tethering the C-terminal tail of hirudin make small but collectively important contributions to the overall positive electrostatic field generated by ABE-I important in electrostatic steering.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002863 Chromogenic Compounds Colorless, endogenous or exogenous pigment precursors that may be transformed by biological mechanisms into colored compounds; used in biochemical assays and in diagnosis as indicators, especially in the form of enzyme substrates. Synonym: chromogens (not to be confused with pigment-synthesizing bacteria also called chromogens). Chromogenic Compound,Chromogenic Substrate,Chromogenic Substrates,Compound, Chromogenic,Compounds, Chromogenic,Substrate, Chromogenic,Substrates, Chromogenic
D004151 Dipeptides Peptides composed of two amino acid units. Dipeptide
D006629 Hirudins Single-chain polypeptides of about 65 amino acids (7 kDa) from LEECHES that have a neutral hydrophobic N terminus, an acidic hydrophilic C terminus, and a compact, hydrophobic core region. Recombinant hirudins lack tyr-63 sulfation and are referred to as 'desulfato-hirudins'. They form a stable non-covalent complex with ALPHA-THROMBIN, thereby abolishing its ability to cleave FIBRINOGEN. Hirudin
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006868 Hydrolysis The process of cleaving a chemical compound by the addition of a molecule of water.
D000596 Amino Acids Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins. Amino Acid,Acid, Amino,Acids, Amino
D000838 Anions Negatively charged atoms, radicals or groups of atoms which travel to the anode or positive pole during electrolysis. Anion

Related Publications

T Myles, and B F Le Bonniec, and A Betz, and S R Stone
November 1998, The Journal of biological chemistry,
T Myles, and B F Le Bonniec, and A Betz, and S R Stone
May 1998, Proceedings of the National Academy of Sciences of the United States of America,
T Myles, and B F Le Bonniec, and A Betz, and S R Stone
August 1996, Biophysical chemistry,
T Myles, and B F Le Bonniec, and A Betz, and S R Stone
December 2017, Biochemistry,
T Myles, and B F Le Bonniec, and A Betz, and S R Stone
August 2009, Biochemistry,
T Myles, and B F Le Bonniec, and A Betz, and S R Stone
May 1991, The Biochemical journal,
T Myles, and B F Le Bonniec, and A Betz, and S R Stone
January 1989, Annals of the New York Academy of Sciences,
T Myles, and B F Le Bonniec, and A Betz, and S R Stone
September 1988, Biochemistry,
T Myles, and B F Le Bonniec, and A Betz, and S R Stone
December 1992, The Journal of biological chemistry,
T Myles, and B F Le Bonniec, and A Betz, and S R Stone
December 1997, Arteriosclerosis, thrombosis, and vascular biology,
Copied contents to your clipboard!