Role of thrombin anion-binding exosite-I in the formation of thrombin-serpin complexes. 1998

T Myles, and F C Church, and H C Whinna, and D Monard, and S R Stone
Department of Haematology, University of Cambridge, MRC Centre, Hills Road, Cambridge, CB2-2QH, United Kingdom. myles@fmi.chi

Site-directed mutagenesis was used to investigate the role of basic residues in the thrombin anion-binding exosite-I during formation of thrombin-antithrombin III (ATIII), thrombin-protease nexin 1 (PN1), and thrombin-heparin cofactor II (HCII) inhibitor complexes, in the absence and presence of glycosaminoglycans. In the absence of glycosaminoglycan, association rate constant (kon) values for the inhibition of the mutant thrombins (R35Q, K36Q, R67Q, R73Q, R75Q, R77(a)Q, K81Q, K109Q, K110Q, and K149(e)Q) by ATIII and PN1 were similar to wild-type recombinant thrombin (rIIa), whereas kon values were decreased 2-3-fold for HCII against the majority of the exosite-I mutants. The exosite-I mutants did not have a significant effect on heparin-accelerated inhibition by ATIII with maximal kon values similar to rIIa. A small effect was seen for PN1/heparin inhibition of the exosite-I mutants R35Q, R67Q, R73Q, R75Q, and R77(a)Q, where kon values were decreased 2-4-fold, compared with rIIa. For HCII/heparin, kon values for inhibition of the exosite-I mutants (except R67Q, R73Q, and K149(e)Q) were 2-3-fold lower than rIIa. Larger decreases in kon values for HCII/heparin were found for R67Q and R73Q thrombins with 441- and 14-fold decreases, respectively, whereas K149(e)Q was unchanged. For HCII/dermatan sulfate, R67Q and R73Q had kon values reduced 720- and 48-fold, respectively, whereas the remaining mutants were decreased 3-7-fold relative to rIIa. The results suggest that ATIII has no major interaction with exosite-I of thrombin with or without heparin. PN1 bound to heparin uses exosite-I to some extent, possibly by utilizing the positive electrostatic field of exosite-I to enhance orientation and thrombin complex formation. The larger effects of the thrombin exosite-I mutants for HCII inhibition with heparin and dermatan sulfate indicate its need for exosite-I, presumably through contact of the "hirudin-like" domain of HCII with exosite-I of thrombin.

UI MeSH Term Description Entries
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D006025 Glycosaminoglycans Heteropolysaccharides which contain an N-acetylated hexosamine in a characteristic repeating disaccharide unit. The repeating structure of each disaccharide involves alternate 1,4- and 1,3-linkages consisting of either N-acetylglucosamine (see ACETYLGLUCOSAMINE) or N-acetylgalactosamine (see ACETYLGALACTOSAMINE). Glycosaminoglycan,Mucopolysaccharides
D006493 Heparin A highly acidic mucopolysaccharide formed of equal parts of sulfated D-glucosamine and D-glucuronic acid with sulfaminic bridges. The molecular weight ranges from six to twenty thousand. Heparin occurs in and is obtained from liver, lung, mast cells, etc., of vertebrates. Its function is unknown, but it is used to prevent blood clotting in vivo and vitro, in the form of many different salts. Heparinic Acid,alpha-Heparin,Heparin Sodium,Liquaemin,Sodium Heparin,Unfractionated Heparin,Heparin, Sodium,Heparin, Unfractionated,alpha Heparin
D006629 Hirudins Single-chain polypeptides of about 65 amino acids (7 kDa) from LEECHES that have a neutral hydrophobic N terminus, an acidic hydrophilic C terminus, and a compact, hydrophobic core region. Recombinant hirudins lack tyr-63 sulfation and are referred to as 'desulfato-hirudins'. They form a stable non-covalent complex with ALPHA-THROMBIN, thereby abolishing its ability to cleave FIBRINOGEN. Hirudin
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000838 Anions Negatively charged atoms, radicals or groups of atoms which travel to the anode or positive pole during electrolysis. Anion

Related Publications

T Myles, and F C Church, and H C Whinna, and D Monard, and S R Stone
April 2001, Biochemistry,
T Myles, and F C Church, and H C Whinna, and D Monard, and S R Stone
December 2017, Biochemistry,
T Myles, and F C Church, and H C Whinna, and D Monard, and S R Stone
August 2009, Biochemistry,
T Myles, and F C Church, and H C Whinna, and D Monard, and S R Stone
December 1992, The Journal of biological chemistry,
T Myles, and F C Church, and H C Whinna, and D Monard, and S R Stone
January 1989, Annals of the New York Academy of Sciences,
T Myles, and F C Church, and H C Whinna, and D Monard, and S R Stone
December 1997, Arteriosclerosis, thrombosis, and vascular biology,
T Myles, and F C Church, and H C Whinna, and D Monard, and S R Stone
September 1988, Biochemistry,
T Myles, and F C Church, and H C Whinna, and D Monard, and S R Stone
January 1994, Growth factors (Chur, Switzerland),
T Myles, and F C Church, and H C Whinna, and D Monard, and S R Stone
December 2013, The FEBS journal,
T Myles, and F C Church, and H C Whinna, and D Monard, and S R Stone
February 1994, The Journal of biological chemistry,
Copied contents to your clipboard!