Repetitive nerve stimulation decreases the acetylcholine content of quanta at the frog neuromuscular junction. 2001

L A Naves, and W Van der Kloot
Department of Physiology, State University of New York at Stony Brook, Stony Brook, NY 11794-8661, USA. lnaves@mono.icb.ufmg.br

We investigated how elevated quantal release produced by motor nerve stimulation affects the size of the quanta. The motor nerve was stimulated at 10 Hz in preparations in which excitation-contraction coupling was disrupted. Two hundred stimuli reduced the size of the time integrals of the miniature endplate currents ([integral]MEPCs), measured at the same junction immediately after stimulation, by 16 %. Three thousand stimuli reduced size by 23 %. When the solution contained 10 microM neostigmine (NEO) 3000 stimuli reduced [integral]MEPCs by 60 %, because with acetylcholinesterase (AChE) inhibited, [integral]MEPC size is more sensitive to changes in acetylcholine (ACh) content. Similar decreases in miniature endplate potential size ([integral]MEPP) followed repetitive stimulation of contracting preparations. The depolarization produced by iontophoretic pulses of ACh was scarcely changed by 3000 nerve stimuli at 10 Hz, suggesting that the decreases in miniature sizes are largely due to less ACh released per quantum. Following 3000 stimuli at 10 Hz the sizes of the [integral]MEPCs increased back to pre-stimulus values with a half-time of 8-10 min. Recovery was blocked by (-)-vesamicol (VES), by hemicholinium-3 (HC3) and by nicotinic cholinergic agonists - all of which inhibit ACh loading into synaptic vesicles. The number of quanta in the total store was estimated by releasing them with carbonyl cyanide m-chlorophenylhydrazone (CCCP). CCCP releases fewer quanta after stimulation than from unstimulated controls. After resting for hours following stimulation, the releasable number increased, even when ACh loading inhibitors were present. We conclude that the inhibitors do not block a significant fraction of the ACh loading into reformed reserve vesicles and propose that ACh can be loaded in a series of steps.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009046 Motor Neurons Neurons which activate MUSCLE CELLS. Neurons, Motor,Alpha Motorneurons,Motoneurons,Motor Neurons, Alpha,Neurons, Alpha Motor,Alpha Motor Neuron,Alpha Motor Neurons,Alpha Motorneuron,Motoneuron,Motor Neuron,Motor Neuron, Alpha,Motorneuron, Alpha,Motorneurons, Alpha,Neuron, Alpha Motor,Neuron, Motor
D009388 Neostigmine A cholinesterase inhibitor used in the treatment of myasthenia gravis and to reverse the effects of muscle relaxants such as gallamine and tubocurarine. Neostigmine, unlike PHYSOSTIGMINE, does not cross the blood-brain barrier. Synstigmin,Neostigmine Bromide,Neostigmine Methylsulfate,Polstigmine,Proserine,Prostigmin,Prostigmine,Prozerin,Syntostigmine,Bromide, Neostigmine,Methylsulfate, Neostigmine
D009467 Neuromuscular Depolarizing Agents Drugs that interrupt transmission at the skeletal neuromuscular junction by causing sustained depolarization of the motor end plate. These agents are primarily used as adjuvants in surgical anesthesia to cause skeletal muscle relaxation. Depolarizing Muscle Relaxants,Muscle Relaxants, Depolarizing,Depolarizing Blockers,Agents, Neuromuscular Depolarizing,Blockers, Depolarizing,Depolarizing Agents, Neuromuscular,Relaxants, Depolarizing Muscle
D009469 Neuromuscular Junction The synapse between a neuron and a muscle. Myoneural Junction,Nerve-Muscle Preparation,Junction, Myoneural,Junction, Neuromuscular,Junctions, Myoneural,Junctions, Neuromuscular,Myoneural Junctions,Nerve Muscle Preparation,Nerve-Muscle Preparations,Neuromuscular Junctions,Preparation, Nerve-Muscle,Preparations, Nerve-Muscle
D009538 Nicotine Nicotine is highly toxic alkaloid. It is the prototypical agonist at nicotinic cholinergic receptors where it dramatically stimulates neurons and ultimately blocks synaptic transmission. Nicotine is also important medically because of its presence in tobacco smoke. Nicotine Bitartrate,Nicotine Tartrate
D010880 Piperidines A family of hexahydropyridines.
D011894 Rana pipiens A highly variable species of the family Ranidae in Canada, the United States and Central America. It is the most widely used Anuran in biomedical research. Frog, Leopard,Leopard Frog,Lithobates pipiens,Frogs, Leopard,Leopard Frogs
D002258 Carbonyl Cyanide m-Chlorophenyl Hydrazone A proton ionophore. It is commonly used as an uncoupling agent and inhibitor of photosynthesis because of its effects on mitochondrial and chloroplast membranes. CCCP,Carbonyl Cyanide meta-Chlorophenyl Hydrazone,Carbonylcyanide 4-Chlorophenylhydrazone,Propanedinitrile, ((3-chlorophenyl)hydrazono)-,Carbonyl Cyanide m Chlorophenyl Hydrazone,4-Chlorophenylhydrazone, Carbonylcyanide,Carbonyl Cyanide meta Chlorophenyl Hydrazone,Carbonylcyanide 4 Chlorophenylhydrazone
D002800 Cholinesterase Inhibitors Drugs that inhibit cholinesterases. The neurotransmitter ACETYLCHOLINE is rapidly hydrolyzed, and thereby inactivated, by cholinesterases. When cholinesterases are inhibited, the action of endogenously released acetylcholine at cholinergic synapses is potentiated. Cholinesterase inhibitors are widely used clinically for their potentiation of cholinergic inputs to the gastrointestinal tract and urinary bladder, the eye, and skeletal muscles; they are also used for their effects on the heart and the central nervous system. Acetylcholinesterase Inhibitor,Acetylcholinesterase Inhibitors,Anti-Cholinesterase,Anticholinesterase,Anticholinesterase Agent,Anticholinesterase Agents,Anticholinesterase Drug,Cholinesterase Inhibitor,Anti-Cholinesterases,Anticholinesterase Drugs,Anticholinesterases,Cholinesterase Inhibitors, Irreversible,Cholinesterase Inhibitors, Reversible,Agent, Anticholinesterase,Agents, Anticholinesterase,Anti Cholinesterase,Anti Cholinesterases,Drug, Anticholinesterase,Drugs, Anticholinesterase,Inhibitor, Acetylcholinesterase,Inhibitor, Cholinesterase,Inhibitors, Acetylcholinesterase,Inhibitors, Cholinesterase,Inhibitors, Irreversible Cholinesterase,Inhibitors, Reversible Cholinesterase,Irreversible Cholinesterase Inhibitors,Reversible Cholinesterase Inhibitors

Related Publications

L A Naves, and W Van der Kloot
November 2010, The European journal of neuroscience,
L A Naves, and W Van der Kloot
January 1966, Pflugers Archiv fur die gesamte Physiologie des Menschen und der Tiere,
L A Naves, and W Van der Kloot
February 2000, The Journal of physiology,
L A Naves, and W Van der Kloot
August 1988, Pflugers Archiv : European journal of physiology,
L A Naves, and W Van der Kloot
June 1984, Experimental neurology,
L A Naves, and W Van der Kloot
November 1977, Nature,
L A Naves, and W Van der Kloot
July 1988, The Journal of physiology,
Copied contents to your clipboard!