Independent release of supranormal acetylcholine quanta at the rat neuromuscular junction. 1982

E Heinonen, and S E Jansson, and E M Tolppanen

This electrophysiological study deals with the occurrence and with the mode of release of unusually large miniature end-plate potentials at the rat neuromuscular junction during physiological conditions. A specific limit for the normal miniature end-plate potential amplitude at each cell studied was determined after fitting the observed frequency-amplitude histogram to a Gaussian distribution. The relative abundance of giant miniature end-plate potentials was 4.15% at room temperature. The occurrence of giant miniature end-plate potentials was temperature dependent. The percentage of giant miniature end-plate potentials was 5.8% and 0.61% at 35 degrees C and at 16 degrees C, respectively. The amplitude-independence of the intervals between miniature end-plate potentials was demonstrated at room temperature as well as at 35 degrees C and at 16 degrees C. The results of this study show that giant miniature end-plate potentials are produced by acetylcholine packets which are released independently and that they are not a consequence of the synchronous release of several normal-sized quanta. Moreover, the results indicate that during physiological conditions a minor but regular proportion of the spontaneous release of acetylcholine is made up of larger packets, which produce miniature end-plate potentials of supranormal amplitude.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009045 Motor Endplate The specialized postsynaptic region of a muscle cell. The motor endplate is immediately across the synaptic cleft from the presynaptic axon terminal. Among its anatomical specializations are junctional folds which harbor a high density of cholinergic receptors. Motor End-Plate,End-Plate, Motor,End-Plates, Motor,Endplate, Motor,Endplates, Motor,Motor End Plate,Motor End-Plates,Motor Endplates
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009469 Neuromuscular Junction The synapse between a neuron and a muscle. Myoneural Junction,Nerve-Muscle Preparation,Junction, Myoneural,Junction, Neuromuscular,Junctions, Myoneural,Junctions, Neuromuscular,Myoneural Junctions,Nerve Muscle Preparation,Nerve-Muscle Preparations,Neuromuscular Junctions,Preparation, Nerve-Muscle,Preparations, Nerve-Muscle
D000109 Acetylcholine A neurotransmitter found at neuromuscular junctions, autonomic ganglia, parasympathetic effector junctions, a subset of sympathetic effector junctions, and at many sites in the central nervous system. 2-(Acetyloxy)-N,N,N-trimethylethanaminium,Acetilcolina Cusi,Acetylcholine Bromide,Acetylcholine Chloride,Acetylcholine Fluoride,Acetylcholine Hydroxide,Acetylcholine Iodide,Acetylcholine L-Tartrate,Acetylcholine Perchlorate,Acetylcholine Picrate,Acetylcholine Picrate (1:1),Acetylcholine Sulfate (1:1),Bromoacetylcholine,Chloroacetylcholine,Miochol,Acetylcholine L Tartrate,Bromide, Acetylcholine,Cusi, Acetilcolina,Fluoride, Acetylcholine,Hydroxide, Acetylcholine,Iodide, Acetylcholine,L-Tartrate, Acetylcholine,Perchlorate, Acetylcholine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013572 Synaptic Vesicles Membrane-bound compartments which contain transmitter molecules. Synaptic vesicles are concentrated at presynaptic terminals. They actively sequester transmitter molecules from the cytoplasm. In at least some synapses, transmitter release occurs by fusion of these vesicles with the presynaptic membrane, followed by exocytosis of their contents. Synaptic Vesicle,Vesicle, Synaptic,Vesicles, Synaptic
D013696 Temperature The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms. Temperatures
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D066298 In Vitro Techniques Methods to study reactions or processes taking place in an artificial environment outside the living organism. In Vitro Test,In Vitro Testing,In Vitro Tests,In Vitro as Topic,In Vitro,In Vitro Technique,In Vitro Testings,Technique, In Vitro,Techniques, In Vitro,Test, In Vitro,Testing, In Vitro,Testings, In Vitro,Tests, In Vitro,Vitro Testing, In

Related Publications

E Heinonen, and S E Jansson, and E M Tolppanen
November 2010, The European journal of neuroscience,
E Heinonen, and S E Jansson, and E M Tolppanen
November 1963, The Journal of pharmacology and experimental therapeutics,
E Heinonen, and S E Jansson, and E M Tolppanen
July 2008, Neuroscience,
E Heinonen, and S E Jansson, and E M Tolppanen
January 2009, Physiological research,
E Heinonen, and S E Jansson, and E M Tolppanen
October 1994, Physiological reviews,
E Heinonen, and S E Jansson, and E M Tolppanen
March 1987, Journal of neurochemistry,
E Heinonen, and S E Jansson, and E M Tolppanen
January 1992, The European journal of neuroscience,
E Heinonen, and S E Jansson, and E M Tolppanen
May 2001, The Journal of physiology,
E Heinonen, and S E Jansson, and E M Tolppanen
January 2006, Pharmacological research,
E Heinonen, and S E Jansson, and E M Tolppanen
November 1986, Acta physiologica Scandinavica,
Copied contents to your clipboard!