Excitation-contraction uncoupling: major role in contraction-induced muscle injury. 2001

G L Warren, and C P Ingalls, and D A Lowe, and R B Armstrong
Department of Physical Therapy, Georgia State University, Atlanta, Georgia, USA. phtglw@langate.gsu.edu

The mechanisms that account for the strength loss after contraction-induced muscle injury remain controversial. We present data showing that (1) most of the early strength loss results from a failure of excitation-contraction coupling and (2) a slow loss of contractile protein in the days after injury prolongs the recovery time.

UI MeSH Term Description Entries
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009124 Muscle Proteins The protein constituents of muscle, the major ones being ACTINS and MYOSINS. More than a dozen accessory proteins exist including TROPONIN; TROPOMYOSIN; and DYSTROPHIN. Muscle Protein,Protein, Muscle,Proteins, Muscle
D010805 Physical Conditioning, Animal Diet modification and physical exercise to improve the ability of animals to perform physical activities. Animal Physical Conditioning,Animal Physical Conditionings,Conditioning, Animal Physical,Conditionings, Animal Physical,Physical Conditionings, Animal
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012519 Sarcoplasmic Reticulum A network of tubules and sacs in the cytoplasm of SKELETAL MUSCLE FIBERS that assist with muscle contraction and relaxation by releasing and storing calcium ions. Reticulum, Sarcoplasmic,Reticulums, Sarcoplasmic,Sarcoplasmic Reticulums
D014947 Wounds and Injuries Damage inflicted on the body as the direct or indirect result of an external force, with or without disruption of structural continuity. Injuries,Physical Trauma,Trauma,Injuries and Wounds,Injuries, Wounds,Research-Related Injuries,Wounds,Wounds and Injury,Wounds, Injury,Injury,Injury and Wounds,Injury, Research-Related,Physical Traumas,Research Related Injuries,Research-Related Injury,Trauma, Physical,Traumas,Wound
D015444 Exercise Physical activity which is usually regular and done with the intention of improving or maintaining PHYSICAL FITNESS or HEALTH. Contrast with PHYSICAL EXERTION which is concerned largely with the physiologic and metabolic response to energy expenditure. Aerobic Exercise,Exercise, Aerobic,Exercise, Isometric,Exercise, Physical,Isometric Exercise,Physical Activity,Acute Exercise,Exercise Training,Activities, Physical,Activity, Physical,Acute Exercises,Aerobic Exercises,Exercise Trainings,Exercise, Acute,Exercises,Exercises, Acute,Exercises, Aerobic,Exercises, Isometric,Exercises, Physical,Isometric Exercises,Physical Activities,Physical Exercise,Physical Exercises,Training, Exercise,Trainings, Exercise
D018482 Muscle, Skeletal A subtype of striated muscle, attached by TENDONS to the SKELETON. Skeletal muscles are innervated and their movement can be consciously controlled. They are also called voluntary muscles. Anterior Tibial Muscle,Gastrocnemius Muscle,Muscle, Voluntary,Plantaris Muscle,Skeletal Muscle,Soleus Muscle,Muscle, Anterior Tibial,Muscle, Gastrocnemius,Muscle, Plantaris,Muscle, Soleus,Muscles, Skeletal,Muscles, Voluntary,Skeletal Muscles,Tibial Muscle, Anterior,Voluntary Muscle,Voluntary Muscles
D018485 Muscle Fibers, Skeletal Large, multinucleate single cells, either cylindrical or prismatic in shape, that form the basic unit of SKELETAL MUSCLE. They consist of MYOFIBRILS enclosed within and attached to the SARCOLEMMA. They are derived from the fusion of skeletal myoblasts (MYOBLASTS, SKELETAL) into a syncytium, followed by differentiation. Myocytes, Skeletal,Myotubes,Skeletal Myocytes,Skeletal Muscle Fibers,Fiber, Skeletal Muscle,Fibers, Skeletal Muscle,Muscle Fiber, Skeletal,Myocyte, Skeletal,Myotube,Skeletal Muscle Fiber,Skeletal Myocyte

Related Publications

G L Warren, and C P Ingalls, and D A Lowe, and R B Armstrong
June 2009, Applied physiology, nutrition, and metabolism = Physiologie appliquee, nutrition et metabolisme,
G L Warren, and C P Ingalls, and D A Lowe, and R B Armstrong
January 2004, Exercise and sport sciences reviews,
G L Warren, and C P Ingalls, and D A Lowe, and R B Armstrong
December 2012, Neuromuscular disorders : NMD,
G L Warren, and C P Ingalls, and D A Lowe, and R B Armstrong
January 1972, Naunyn-Schmiedeberg's archives of pharmacology,
G L Warren, and C P Ingalls, and D A Lowe, and R B Armstrong
January 1985, British journal of clinical pharmacology,
G L Warren, and C P Ingalls, and D A Lowe, and R B Armstrong
May 1973, The American journal of physiology,
G L Warren, and C P Ingalls, and D A Lowe, and R B Armstrong
September 1978, The Journal of cell biology,
G L Warren, and C P Ingalls, and D A Lowe, and R B Armstrong
August 1993, The Journal of physiology,
G L Warren, and C P Ingalls, and D A Lowe, and R B Armstrong
July 1989, American journal of obstetrics and gynecology,
G L Warren, and C P Ingalls, and D A Lowe, and R B Armstrong
February 1992, Sports medicine (Auckland, N.Z.),
Copied contents to your clipboard!