A new method for excitation-contraction uncoupling in frog skeletal muscle. 1978

J del Castillo, and G Escalona de Motta

The mechanical activity of frog sartorius muscle fibers can be uncoupled from the electrical activity of their surface membranes by immersing the preparation in Ringer solution containing either 1.5 or 2.0 M of formamide for 15--20 min. This uncoupling is not reversed when the muscle is transferred to normal frog Ringer solution. Formamide does not affect the electrical activity of the sciatic nerve branch, and both endplate potentials and miniature endplate potentials may be recorded from the uncoupled muscles. Prolonged exposure to formamide, beyond the time needed to paralyze, causes neuromuscular block.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008722 Methods A series of steps taken in order to conduct research. Techniques,Methodological Studies,Methodological Study,Procedures,Studies, Methodological,Study, Methodological,Method,Procedure,Technique
D009045 Motor Endplate The specialized postsynaptic region of a muscle cell. The motor endplate is immediately across the synaptic cleft from the presynaptic axon terminal. Among its anatomical specializations are junctional folds which harbor a high density of cholinergic receptors. Motor End-Plate,End-Plate, Motor,End-Plates, Motor,Endplate, Motor,Endplates, Motor,Motor End Plate,Motor End-Plates,Motor Endplates
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009469 Neuromuscular Junction The synapse between a neuron and a muscle. Myoneural Junction,Nerve-Muscle Preparation,Junction, Myoneural,Junction, Neuromuscular,Junctions, Myoneural,Junctions, Neuromuscular,Myoneural Junctions,Nerve Muscle Preparation,Nerve-Muscle Preparations,Neuromuscular Junctions,Preparation, Nerve-Muscle,Preparations, Nerve-Muscle
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D005559 Formamides A group of amides with the general formula of R-CONH2.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

J del Castillo, and G Escalona de Motta
October 2016, Journal of muscle research and cell motility,
J del Castillo, and G Escalona de Motta
January 2004, Exercise and sport sciences reviews,
J del Castillo, and G Escalona de Motta
January 1972, Naunyn-Schmiedeberg's archives of pharmacology,
J del Castillo, and G Escalona de Motta
April 1982, Canadian journal of physiology and pharmacology,
J del Castillo, and G Escalona de Motta
May 1995, The Journal of physiology,
J del Castillo, and G Escalona de Motta
August 1984, Journal of muscle research and cell motility,
J del Castillo, and G Escalona de Motta
January 1980, The Japanese journal of physiology,
J del Castillo, and G Escalona de Motta
January 1975, The Japanese journal of physiology,
J del Castillo, and G Escalona de Motta
January 1979, Acta physiologica Academiae Scientiarum Hungaricae,
J del Castillo, and G Escalona de Motta
April 1992, The Journal of physiology,
Copied contents to your clipboard!