Regulation of helper T cell responses to staphylococcal superantigens. 2001

S B Cameron, and M C Nawijn, and W W Kum, and H F Savelkoul, and A W Chow
Division of Infectious Diseases, Department of Medicine, University of British Columbia, Vancouver Hospital, Vancouver, B.C., Canada.

Staphylococcal superantigens (sAgs) including toxic shock syndrome toxin-1 (TSST-1) and related enterotoxins are exoproteins with unique immunobiological properties. They bind to major histocompatibility complex (MHC) class II molecules of antigen-presenting cells outside the peptide groove, and induce massive proliferation of T cells bearing specific V beta determinants. This tri-molecular interaction leads to uncontrolled release of various proinflammatory cytokines especially interferon-gamma (IFN-gamma) and tumor necrosis factor-a (TNF-alpha), the key cytokines causing sAg-mediated shock. The effector T cells involved in this hyper-immune response are predominantly of the T helper-1 (Th1) phenotype. There is also some evidence that polarization to a Th2 response with the production of classical anti-inflammatory cytokines (such as interleukins IL-4 and IL-6) also occurs. Moreover, the emergence of a novel regulatory T cell (Tr1) subset, producing mainly IL-10 but little or no IL-2 and IL-4, has recently been described following repeated sAg stimulation. In this review, the current knowledge regarding the regulation of T helper cell subsets in response to staphylococcal sAgs is critically evaluated, and the role of various cytokines which directly influence T cell differentiation and polarization is summarized. Particular emphasis is directed towards pro-inflammatory as well as anti-inflammatory and regulatory effector functions during toxic shock. Based on this review, we propose that a delayed production of IL-10 by Tr1 cells may be the most prominent driving force in the down-regulation of the Th1 hyper-immune response, and the critical determinant for the eventual recovery of the host.

UI MeSH Term Description Entries
D008213 Lymphocyte Activation Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION. Blast Transformation,Blastogenesis,Lymphoblast Transformation,Lymphocyte Stimulation,Lymphocyte Transformation,Transformation, Blast,Transformation, Lymphoblast,Transformation, Lymphocyte,Activation, Lymphocyte,Stimulation, Lymphocyte
D006377 T-Lymphocytes, Helper-Inducer Subpopulation of CD4+ lymphocytes that cooperate with other lymphocytes (either T or B) to initiate a variety of immune functions. For example, helper-inducer T-cells cooperate with B-cells to produce antibodies to thymus-dependent antigens and with other subpopulations of T-cells to initiate a variety of cell-mediated immune functions. Helper Cell,Helper Cells,Helper T Cell,Helper-Inducer T-Lymphocytes,Inducer Cell,Inducer Cells,T-Cells, Helper-Inducer,T-Lymphocytes, Helper,T-Lymphocytes, Inducer,Helper T-Cells,Cell, Helper T,Cells, Helper T,Helper Inducer T Lymphocytes,Helper T Cells,Helper T-Cell,Helper T-Lymphocyte,Helper T-Lymphocytes,Helper-Inducer T-Cell,Helper-Inducer T-Cells,Helper-Inducer T-Lymphocyte,Inducer T-Lymphocyte,Inducer T-Lymphocytes,T Cell, Helper,T Cells, Helper,T Cells, Helper Inducer,T Lymphocytes, Helper,T Lymphocytes, Helper Inducer,T Lymphocytes, Inducer,T-Cell, Helper,T-Cell, Helper-Inducer,T-Cells, Helper,T-Lymphocyte, Helper,T-Lymphocyte, Helper-Inducer,T-Lymphocyte, Inducer
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D012772 Shock, Septic Sepsis associated with HYPOTENSION or hypoperfusion despite adequate fluid resuscitation. Perfusion abnormalities may include but are not limited to LACTIC ACIDOSIS; OLIGURIA; or acute alteration in mental status. Endotoxin Shock,Septic Shock,Shock, Endotoxic,Shock, Toxic,Toxic Shock,Toxic Shock Syndrome,Endotoxin Shocks,Shock Syndrome, Toxic,Shock, Endotoxin,Shocks, Endotoxin,Toxic Shock Syndromes
D013210 Staphylococcus A genus of gram-positive, facultatively anaerobic, coccoid bacteria. Its organisms occur singly, in pairs, and in tetrads and characteristically divide in more than one plane to form irregular clusters. Natural populations of Staphylococcus are found on the skin and mucous membranes of warm-blooded animals. Some species are opportunistic pathogens of humans and animals.
D016207 Cytokines Non-antibody proteins secreted by inflammatory leukocytes and some non-leukocytic cells, that act as intercellular mediators. They differ from classical hormones in that they are produced by a number of tissue or cell types rather than by specialized glands. They generally act locally in a paracrine or autocrine rather than endocrine manner. Cytokine
D018089 Superantigens Microbial antigens that have in common an extremely potent activating effect on T-cells that bear a specific variable region. Superantigens cross-link the variable region with class II MHC proteins regardless of the peptide binding in the T-cell receptor's pocket. The result is a transient expansion and subsequent death and anergy of the T-cells with the appropriate variable regions. Superantigen

Related Publications

S B Cameron, and M C Nawijn, and W W Kum, and H F Savelkoul, and A W Chow
June 2003, Clinical and experimental immunology,
S B Cameron, and M C Nawijn, and W W Kum, and H F Savelkoul, and A W Chow
September 1999, Clinical and experimental allergy : journal of the British Society for Allergy and Clinical Immunology,
S B Cameron, and M C Nawijn, and W W Kum, and H F Savelkoul, and A W Chow
July 1994, Journal of immunology (Baltimore, Md. : 1950),
S B Cameron, and M C Nawijn, and W W Kum, and H F Savelkoul, and A W Chow
December 1994, Immunology,
S B Cameron, and M C Nawijn, and W W Kum, and H F Savelkoul, and A W Chow
October 1994, Journal of immunology (Baltimore, Md. : 1950),
S B Cameron, and M C Nawijn, and W W Kum, and H F Savelkoul, and A W Chow
May 1998, Clinical and experimental immunology,
S B Cameron, and M C Nawijn, and W W Kum, and H F Savelkoul, and A W Chow
January 1999, Immunologic research,
S B Cameron, and M C Nawijn, and W W Kum, and H F Savelkoul, and A W Chow
February 2020, Cell metabolism,
S B Cameron, and M C Nawijn, and W W Kum, and H F Savelkoul, and A W Chow
March 2003, The Journal of experimental medicine,
Copied contents to your clipboard!