Synergistic effect of urotensin II with mildly oxidized LDL on DNA synthesis in vascular smooth muscle cells. 2001

T Watanabe, and R Pakala, and T Katagiri, and C R Benedict
Department of Internal Medicine, Division of Cardiology, University of Texas-Houston Health Science Center, Third Department of Internal Medicine, Showa University School of Medicine, Tokyo, Japan.

BACKGROUND The urotensin II (UII) found in coronary atheroma is the most potent vasoconstrictor known to date. Mildly oxidized LDL (moxLDL) contributes to atherogenesis and plaque formation. We assessed the effect of UII and its interaction with moxLDL and the oxidative components of moxLDL on vascular smooth muscle cell (VSMC) proliferation. Methods and Results-Growth-arrested VSMCs were incubated in serum-free medium with different concentrations of LDL, moxLDL, oxLDL, hydrogen peroxide, lysophosphatidylcholine, or 4-hydroxy-2-nonenal, with or without UII. [(3)H]Thymidine incorporation into DNA was measured as an index of VSMC proliferation. UII stimulated [(3)H]thymidine incorporation in a dose-dependent manner, with a maximal effect at a concentration of 50 nmol/L (161%). Low concentrations of UII potentiated the mitogenic effect of LDL (108% to 242%), oxLDL (129% to 302%), moxLDL (120% to 337%), hydrogen peroxide (177% to 226%), lysophosphatidylcholine (115% to 332%), and 4-hydroxy-2-nonenal (142% to 299%). The synergistic interaction between UII and moxLDL was partially inhibited by anti-Gq/11alpha antibody, the epidermal growth factor receptor tyrosine kinase inhibitor erbstatin A (10 micromol/L), and the intracellular free radical scavenger N-acetylcysteine (400 micromol/L) and was completely inhibited by the c-Src tyrosine kinase inhibitor radicicol (10 micromol/L), the protein kinase C (PKC) inhibitor Ro31-8220 (0.1 micromol/L), and the mitogen-activated protein kinase (MAPK) kinase inhibitor PD098059 (10 micromol/L). CONCLUSIONS Our results suggest that UII acts synergistically with moxLDL in inducing VSMC proliferation via the c-Src/PKC/MAPK pathway, which may explain the relatively rapid progression of atherosclerosis in patients with hypertension and hypercholesterolemia.

UI MeSH Term Description Entries
D008077 Lipoproteins, LDL A class of lipoproteins of small size (18-25 nm) and light (1.019-1.063 g/ml) particles with a core composed mainly of CHOLESTEROL ESTERS and smaller amounts of TRIGLYCERIDES. The surface monolayer consists mostly of PHOSPHOLIPIDS, a single copy of APOLIPOPROTEIN B-100, and free cholesterol molecules. The main LDL function is to transport cholesterol and cholesterol esters to extrahepatic tissues. Low-Density Lipoprotein,Low-Density Lipoproteins,beta-Lipoprotein,beta-Lipoproteins,LDL(1),LDL(2),LDL-1,LDL-2,LDL1,LDL2,Low-Density Lipoprotein 1,Low-Density Lipoprotein 2,LDL Lipoproteins,Lipoprotein, Low-Density,Lipoproteins, Low-Density,Low Density Lipoprotein,Low Density Lipoprotein 1,Low Density Lipoprotein 2,Low Density Lipoproteins,beta Lipoprotein,beta Lipoproteins
D008244 Lysophosphatidylcholines Derivatives of PHOSPHATIDYLCHOLINES obtained by their partial hydrolysis which removes one of the fatty acid moieties. Lysolecithin,Lysolecithins,Lysophosphatidylcholine
D008297 Male Males
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D011493 Protein Kinase C An serine-threonine protein kinase that requires the presence of physiological concentrations of CALCIUM and membrane PHOSPHOLIPIDS. The additional presence of DIACYLGLYCEROLS markedly increases its sensitivity to both calcium and phospholipids. The sensitivity of the enzyme can also be increased by PHORBOL ESTERS and it is believed that protein kinase C is the receptor protein of tumor-promoting phorbol esters. Calcium Phospholipid-Dependent Protein Kinase,Calcium-Activated Phospholipid-Dependent Kinase,PKC Serine-Threonine Kinase,Phospholipid-Sensitive Calcium-Dependent Protein Kinase,Protein Kinase M,Calcium Activated Phospholipid Dependent Kinase,Calcium Phospholipid Dependent Protein Kinase,PKC Serine Threonine Kinase,Phospholipid Sensitive Calcium Dependent Protein Kinase,Phospholipid-Dependent Kinase, Calcium-Activated,Serine-Threonine Kinase, PKC
D011505 Protein-Tyrosine Kinases Protein kinases that catalyze the PHOSPHORYLATION of TYROSINE residues in proteins with ATP or other nucleotides as phosphate donors. Tyrosine Protein Kinase,Tyrosine-Specific Protein Kinase,Protein-Tyrosine Kinase,Tyrosine Kinase,Tyrosine Protein Kinases,Tyrosine-Specific Protein Kinases,Tyrosylprotein Kinase,Kinase, Protein-Tyrosine,Kinase, Tyrosine,Kinase, Tyrosine Protein,Kinase, Tyrosine-Specific Protein,Kinase, Tyrosylprotein,Kinases, Protein-Tyrosine,Kinases, Tyrosine Protein,Kinases, Tyrosine-Specific Protein,Protein Kinase, Tyrosine-Specific,Protein Kinases, Tyrosine,Protein Kinases, Tyrosine-Specific,Protein Tyrosine Kinase,Protein Tyrosine Kinases,Tyrosine Specific Protein Kinase,Tyrosine Specific Protein Kinases
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell

Related Publications

T Watanabe, and R Pakala, and T Katagiri, and C R Benedict
May 2008, Biochemical and biophysical research communications,
T Watanabe, and R Pakala, and T Katagiri, and C R Benedict
October 1996, Circulation research,
T Watanabe, and R Pakala, and T Katagiri, and C R Benedict
October 2006, Hypertension research : official journal of the Japanese Society of Hypertension,
T Watanabe, and R Pakala, and T Katagiri, and C R Benedict
August 1995, The Biochemical journal,
T Watanabe, and R Pakala, and T Katagiri, and C R Benedict
September 2010, Vascular health and risk management,
T Watanabe, and R Pakala, and T Katagiri, and C R Benedict
April 1986, The American journal of physiology,
T Watanabe, and R Pakala, and T Katagiri, and C R Benedict
September 2005, International journal of cardiology,
T Watanabe, and R Pakala, and T Katagiri, and C R Benedict
July 1985, Journal of cellular physiology,
T Watanabe, and R Pakala, and T Katagiri, and C R Benedict
December 2011, Cardiovascular research,
T Watanabe, and R Pakala, and T Katagiri, and C R Benedict
April 2015, Journal of Huazhong University of Science and Technology. Medical sciences = Hua zhong ke ji da xue xue bao. Yi xue Ying De wen ban = Huazhong keji daxue xuebao. Yixue Yingdewen ban,
Copied contents to your clipboard!