Effect of heparin on vascular smooth muscle cells. II. Specific protein synthesis. 1985

D L Cochran, and J J Castellot, and M J Karnovsky

Heparin suppresses the proliferation of vascular smooth muscle cells both in vivo and in vitro. The mechanism of action of the antiproliferative activity of heparin is not known. We have detected differences in the synthesis of specific proteins when vascular smooth muscle cells are exposed to heparin and report here that many characteristics of these protein alterations parallel the properties of the antiproliferative activity. The induction into the culture medium of a pair of proteins of approximately 35,000 dalton mw in heparin-treated smooth muscle cell cultures and the antiproliferative effect of heparin share the following characteristics: 1) the effect is reversible, 2) the effect is specific for smooth muscle cells, 3) anticoagulant and non-anticoagulant heparin are equally effective, 4) the effect is lost with time in culture and, 5) heparin is the most potent glycosaminoglycan in producing the effect. Furthermore, heparin causes a transient suppression of a 48,000 dalton substrate-attached protein, whereas chondroitin sulfate A and C and dermatan sulfate had much less effect. Dextran sulfate was almost as effective as heparin in suppressing the synthesis of the substrate-attached protein. These proteins appear to be noncollagenous and the induced synthesis of the 35,000 dalton proteins is inhibited by actinomycin D. Although a direct relationship between these specific protein changes and the antiproliferative effect of heparin has not been proven, these protein alterations may play a crucial role in the effect of heparin on smooth muscle cell growth.

UI MeSH Term Description Entries
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002809 Chondroitin Sulfates Derivatives of chondroitin which have a sulfate moiety esterified to the galactosamine moiety of chondroitin. Chondroitin sulfate A, or chondroitin 4-sulfate, and chondroitin sulfate C, or chondroitin 6-sulfate, have the sulfate esterified in the 4- and 6-positions, respectively. Chondroitin sulfate B (beta heparin; DERMATAN SULFATE) is a misnomer and this compound is not a true chondroitin sulfate. Chondroitin 4-Sulfate,Chondroitin 6-Sulfate,Chondroitin Sulfate A,Chondroitin Sulfate C,Blutal,Chondroitin 4-Sulfate, Aluminum Salt,Chondroitin 4-Sulfate, Potassium Salt,Chondroitin 6-Sulfate, Potassium Salt,Chondroitin 6-Sulfate, Sodium Salt,Chondroitin Sulfate,Chondroitin Sulfate 4-Sulfate, Sodium Salt,Chondroitin Sulfate, Calcium Salt,Chondroitin Sulfate, Iron (+3) Salt,Chondroitin Sulfate, Iron Salt,Chondroitin Sulfate, Potassium Salt,Chondroitin Sulfate, Sodium Salt,Chondroitin Sulfate, Zinc Salt,Chonsurid,Sodium Chondroitin Sulfate,Translagen,Chondroitin 4 Sulfate,Chondroitin 4 Sulfate, Aluminum Salt,Chondroitin 4 Sulfate, Potassium Salt,Chondroitin 6 Sulfate,Chondroitin 6 Sulfate, Potassium Salt,Chondroitin 6 Sulfate, Sodium Salt,Chondroitin Sulfate 4 Sulfate, Sodium Salt,Chondroitin Sulfate, Sodium,Sulfate, Chondroitin,Sulfate, Sodium Chondroitin,Sulfates, Chondroitin
D003871 Dermatan Sulfate A naturally occurring glycosaminoglycan found mostly in the skin and in connective tissue. It differs from CHONDROITIN SULFATE A (see CHONDROITIN SULFATES) by containing IDURONIC ACID in place of glucuronic acid, its epimer, at carbon atom 5. (from Merck, 12th ed) Chondroitin Sulfate B,beta-Heparin,Sulfate B, Chondroitin,Sulfate, Dermatan,beta Heparin
D003911 Dextrans A group of glucose polymers made by certain bacteria. Dextrans are used therapeutically as plasma volume expanders and anticoagulants. They are also commonly used in biological experimentation and in industry for a wide variety of purposes. Dextran,Dextran 40,Dextran 40000,Dextran 70,Dextran 75,Dextran 80,Dextran B-1355,Dextran B-1355-S,Dextran B1355,Dextran B512,Dextran Derivatives,Dextran M 70,Dextran T 70,Dextran T-40,Dextran T-500,Hemodex,Hyskon,Infukoll,Macrodex,Polyglucin,Promit,Rheodextran,Rheoisodex,Rheomacrodex,Rheopolyglucin,Rondex,Saviosol,Dextran B 1355,Dextran B 1355 S,Dextran T 40,Dextran T 500
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D005470 Fluorometry An analytical method for detecting and measuring FLUORESCENCE in compounds or targets such as cells, proteins, or nucleotides, or targets previously labeled with FLUORESCENCE AGENTS. Fluorimetry,Fluorometric Analysis,Analysis, Fluorometric
D006493 Heparin A highly acidic mucopolysaccharide formed of equal parts of sulfated D-glucosamine and D-glucuronic acid with sulfaminic bridges. The molecular weight ranges from six to twenty thousand. Heparin occurs in and is obtained from liver, lung, mast cells, etc., of vertebrates. Its function is unknown, but it is used to prevent blood clotting in vivo and vitro, in the form of many different salts. Heparinic Acid,alpha-Heparin,Heparin Sodium,Liquaemin,Sodium Heparin,Unfractionated Heparin,Heparin, Sodium,Heparin, Unfractionated,alpha Heparin

Related Publications

D L Cochran, and J J Castellot, and M J Karnovsky
June 1993, The American journal of physiology,
D L Cochran, and J J Castellot, and M J Karnovsky
April 1989, Hypertension (Dallas, Tex. : 1979),
D L Cochran, and J J Castellot, and M J Karnovsky
January 1987, The Journal of biological chemistry,
D L Cochran, and J J Castellot, and M J Karnovsky
February 1988, Journal of cardiovascular pharmacology,
D L Cochran, and J J Castellot, and M J Karnovsky
January 1987, Biochemical and biophysical research communications,
D L Cochran, and J J Castellot, and M J Karnovsky
December 2003, Circulation research,
D L Cochran, and J J Castellot, and M J Karnovsky
May 2014, Vascular and endovascular surgery,
D L Cochran, and J J Castellot, and M J Karnovsky
October 1990, Biochemical Society transactions,
D L Cochran, and J J Castellot, and M J Karnovsky
April 1986, The American journal of physiology,
Copied contents to your clipboard!