In vivo blockade of the Fas-Fas ligand pathway inhibits cyclophosphamide-induced diabetes in NOD mice. 2001

J Mahiou, and U Walter, and F Lepault, and F Godeau, and J F Bach, and L Chatenoud
INSERM U 25, Hôpital Necker, 161 rue de Sèvres, Paris, 75015, France.

There is compelling evidence to show that insulin dependent diabetes ensues from selective apoptosis of pancreatic beta-cells mediated by autoreactive T-lymphocytes. The respective implication in this phenomenon of the various apoptotic pathways driven by Fas, perforin, or tumor necrosis factor is still ill- defined. Here we took advantage of the cyclophosphamide-induced model of accelerated diabetes in NOD mice to explore the physiopathological role of the Fas-Fas Ligand pathway. A single injection of cyclophosphamide (200 mg/kg) to 7-8 week-old prediabetic NOD mice triggered diabetes within 10-15 days in 85-100% of the animals. Cyclophosphamide also induced a significant decrease in spleen T cells, that was most evident by days 6-10 after treatment, and selectively affected the CD3(+)CD62L(+)compartment that includes immunoregulatory T cells. To block the in vivo Fas-Fas ligand (Fas L) interaction we administered a biologically active recombinant fusion protein coupling mouse Fas to the Fc portion of human IgG1 (FAS-Fc). Mice treated with FAS-Fc (10 doses iv of 15 microg) starting on the day of cyclophosphamide injection up to day 22, were fully protected from disease. Unexpectedly this protective effect was not due to blockade of Fas-FasL-mediated beta-cell apoptosis but rather to the inhibition of the cyclophosphamide effect on T cells. Indeed FAS-Fc treatment prevented the drug-induced T cell depletion in general and that of immunoregulatory T cells in particular. Additionally, FAS-Fc administration limited to the phase of beta-cell destruction did not afford any protection.

UI MeSH Term Description Entries
D007166 Immunosuppressive Agents Agents that suppress immune function by one of several mechanisms of action. Classical cytotoxic immunosuppressants act by inhibiting DNA synthesis. Others may act through activation of T-CELLS or by inhibiting the activation of HELPER CELLS. While immunosuppression has been brought about in the past primarily to prevent rejection of transplanted organs, new applications involving mediation of the effects of INTERLEUKINS and other CYTOKINES are emerging. Immunosuppressant,Immunosuppressive Agent,Immunosuppressants,Agent, Immunosuppressive,Agents, Immunosuppressive
D007515 Islets of Langerhans Irregular microscopic structures consisting of cords of endocrine cells that are scattered throughout the PANCREAS among the exocrine acini. Each islet is surrounded by connective tissue fibers and penetrated by a network of capillaries. There are four major cell types. The most abundant beta cells (50-80%) secrete INSULIN. Alpha cells (5-20%) secrete GLUCAGON. PP cells (10-35%) secrete PANCREATIC POLYPEPTIDE. Delta cells (~5%) secrete SOMATOSTATIN. Islands of Langerhans,Islet Cells,Nesidioblasts,Pancreas, Endocrine,Pancreatic Islets,Cell, Islet,Cells, Islet,Endocrine Pancreas,Islet Cell,Islet, Pancreatic,Islets, Pancreatic,Langerhans Islands,Langerhans Islets,Nesidioblast,Pancreatic Islet
D008212 Lymphocyte Depletion Immunosuppression by reduction of circulating lymphocytes or by T-cell depletion of bone marrow. The former may be accomplished in vivo by thoracic duct drainage or administration of antilymphocyte serum. The latter is performed ex vivo on bone marrow before its transplantation. Depletion, Lymphocyte
D008562 Membrane Glycoproteins Glycoproteins found on the membrane or surface of cells. Cell Surface Glycoproteins,Surface Glycoproteins,Cell Surface Glycoprotein,Membrane Glycoprotein,Surface Glycoprotein,Glycoprotein, Cell Surface,Glycoprotein, Membrane,Glycoprotein, Surface,Glycoproteins, Cell Surface,Glycoproteins, Membrane,Glycoproteins, Surface,Surface Glycoprotein, Cell,Surface Glycoproteins, Cell
D003520 Cyclophosphamide Precursor of an alkylating nitrogen mustard antineoplastic and immunosuppressive agent that must be activated in the LIVER to form the active aldophosphamide. It has been used in the treatment of LYMPHOMA and LEUKEMIA. Its side effect, ALOPECIA, has been used for defleecing sheep. Cyclophosphamide may also cause sterility, birth defects, mutations, and cancer. (+,-)-2-(bis(2-Chloroethyl)amino)tetrahydro-2H-1,3,2-oxazaphosphorine 2-Oxide Monohydrate,B-518,Cyclophosphamide Anhydrous,Cyclophosphamide Monohydrate,Cyclophosphamide, (R)-Isomer,Cyclophosphamide, (S)-Isomer,Cyclophosphane,Cytophosphan,Cytophosphane,Cytoxan,Endoxan,NSC-26271,Neosar,Procytox,Sendoxan,B 518,B518,NSC 26271,NSC26271
D003922 Diabetes Mellitus, Type 1 A subtype of DIABETES MELLITUS that is characterized by INSULIN deficiency. It is manifested by the sudden onset of severe HYPERGLYCEMIA, rapid progression to DIABETIC KETOACIDOSIS, and DEATH unless treated with insulin. The disease may occur at any age, but is most common in childhood or adolescence. Diabetes Mellitus, Brittle,Diabetes Mellitus, Insulin-Dependent,Diabetes Mellitus, Juvenile-Onset,Diabetes Mellitus, Ketosis-Prone,Diabetes Mellitus, Sudden-Onset,Diabetes, Autoimmune,IDDM,Autoimmune Diabetes,Diabetes Mellitus, Insulin-Dependent, 1,Diabetes Mellitus, Type I,Insulin-Dependent Diabetes Mellitus 1,Juvenile-Onset Diabetes,Type 1 Diabetes,Type 1 Diabetes Mellitus,Brittle Diabetes Mellitus,Diabetes Mellitus, Insulin Dependent,Diabetes Mellitus, Juvenile Onset,Diabetes Mellitus, Ketosis Prone,Diabetes Mellitus, Sudden Onset,Diabetes, Juvenile-Onset,Diabetes, Type 1,Insulin Dependent Diabetes Mellitus 1,Insulin-Dependent Diabetes Mellitus,Juvenile Onset Diabetes,Juvenile-Onset Diabetes Mellitus,Ketosis-Prone Diabetes Mellitus,Sudden-Onset Diabetes Mellitus
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001402 B-Lymphocytes Lymphoid cells concerned with humoral immunity. They are short-lived cells resembling bursa-derived lymphocytes of birds in their production of immunoglobulin upon appropriate stimulation. B-Cells, Lymphocyte,B-Lymphocyte,Bursa-Dependent Lymphocytes,B Cells, Lymphocyte,B Lymphocyte,B Lymphocytes,B-Cell, Lymphocyte,Bursa Dependent Lymphocytes,Bursa-Dependent Lymphocyte,Lymphocyte B-Cell,Lymphocyte B-Cells,Lymphocyte, Bursa-Dependent,Lymphocytes, Bursa-Dependent
D013154 Spleen An encapsulated lymphatic organ through which venous blood filters.

Related Publications

J Mahiou, and U Walter, and F Lepault, and F Godeau, and J F Bach, and L Chatenoud
January 2002, The Histochemical journal,
J Mahiou, and U Walter, and F Lepault, and F Godeau, and J F Bach, and L Chatenoud
November 2003, Annals of the New York Academy of Sciences,
J Mahiou, and U Walter, and F Lepault, and F Godeau, and J F Bach, and L Chatenoud
April 2010, Journal of controlled release : official journal of the Controlled Release Society,
J Mahiou, and U Walter, and F Lepault, and F Godeau, and J F Bach, and L Chatenoud
April 2002, Annals of the New York Academy of Sciences,
J Mahiou, and U Walter, and F Lepault, and F Godeau, and J F Bach, and L Chatenoud
February 1999, European journal of immunology,
J Mahiou, and U Walter, and F Lepault, and F Godeau, and J F Bach, and L Chatenoud
May 1991, Diabetes research (Edinburgh, Scotland),
J Mahiou, and U Walter, and F Lepault, and F Godeau, and J F Bach, and L Chatenoud
January 1994, Autoimmunity,
J Mahiou, and U Walter, and F Lepault, and F Godeau, and J F Bach, and L Chatenoud
August 2007, Experimental lung research,
J Mahiou, and U Walter, and F Lepault, and F Godeau, and J F Bach, and L Chatenoud
June 2004, Immunity,
J Mahiou, and U Walter, and F Lepault, and F Godeau, and J F Bach, and L Chatenoud
April 1989, Diabetes,
Copied contents to your clipboard!