Fas and Fas ligand immunolocalization in pancreatic islets of NOD mice during spontaneous and cyclophosphamide-accelerated diabetes. 2002

S Redd, and S Ginn, and J M Ross
School of Biological Sciences, University of Auckland, New Zealand.

During insulin-dependent diabetes mellitus, immune cells which infiltrate pancreatic islets mediate beta cell destruction over a prolonged asymptomatic prediabetic period. The molecular mechanisms of beta cell death in vivo remain unresolved. At least two major molecular processes of destruction have been proposed. One involves the Fas-FasL (Fas-Fas ligand) system and the other, the perforin pathway. Here, dual-label immunohistochemistry was employed to examine the intra-islet expression, distribution and cellular sources of Fas and FasL in the NOD mouse, during spontaneous diabetes (days 21, 40 and 90) and following acceleration of diabetes with cyclophosphamide (days 0, 4, 7, 11 and 14 after cyclophosphamide administration). The expression of the proteins was correlated with advancing disease. FasL was expressed constitutively in most beta cells but not in glucagon or somatostatin cells or islet inflammatory cells and paralleled the loss of insulin immunolabelling with advancing disease. It was also expressed in beta cells of non-diabetes prone CD-1 and C57BL/6 mice from a young age (day 21). Strong immunolabelling for Fas was first observed in extra-islet macrophages and those close to the islet in NOD and non-diabetes-prone mice. During spontaneous and cyclophosphamide diabetes, it was observed in a higher proportion of islet infiltrating macrophages than CD4 and CD8 T cells, concomitant with advancing insulitis. In cyclophosphamide-treated mice, the proportion of Fas-positive intra-islet CD4 and CD8 T cells at day 14 (with and without diabetes) was considerably higher than at days 0, 4, 7 and 11. At days 11 and 14, a proportion of Fas-positive intra-islet macrophages co-expressed interleukin-1beta and inducible nitric oxide synthase. Fas was not detectable in beta cells and other islet endocrine cells during spontaneous and cyclophosphamide induced diabetes. Our results show constitutive expression of FasL in beta cells in the NOD mouse and predominant expression of Fas in intra-islet macrophages and to a lesser extent in T cells prior to diabetes onset. Interleukin-1beta in intra-islet macrophages may induce Fas and inducible nitric oxide synthase expression in an autocrine and paracrine manner and mediate beta cell destruction or even death of some macrophages and T cells. However, other mechanisms of beta cell destruction during spontaneous and cyclophosphamide-accelerated diabetes and independent of Fas-FasL, require examination.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D007375 Interleukin-1 A soluble factor produced by MONOCYTES; MACROPHAGES, and other cells which activates T-lymphocytes and potentiates their response to mitogens or antigens. Interleukin-1 is a general term refers to either of the two distinct proteins, INTERLEUKIN-1ALPHA and INTERLEUKIN-1BETA. The biological effects of IL-1 include the ability to replace macrophage requirements for T-cell activation. IL-1,Lymphocyte-Activating Factor,Epidermal Cell Derived Thymocyte-Activating Factor,Interleukin I,Macrophage Cell Factor,T Helper Factor,Epidermal Cell Derived Thymocyte Activating Factor,Interleukin 1,Lymphocyte Activating Factor
D007515 Islets of Langerhans Irregular microscopic structures consisting of cords of endocrine cells that are scattered throughout the PANCREAS among the exocrine acini. Each islet is surrounded by connective tissue fibers and penetrated by a network of capillaries. There are four major cell types. The most abundant beta cells (50-80%) secrete INSULIN. Alpha cells (5-20%) secrete GLUCAGON. PP cells (10-35%) secrete PANCREATIC POLYPEPTIDE. Delta cells (~5%) secrete SOMATOSTATIN. Islands of Langerhans,Islet Cells,Nesidioblasts,Pancreas, Endocrine,Pancreatic Islets,Cell, Islet,Cells, Islet,Endocrine Pancreas,Islet Cell,Islet, Pancreatic,Islets, Pancreatic,Langerhans Islands,Langerhans Islets,Nesidioblast,Pancreatic Islet
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D008562 Membrane Glycoproteins Glycoproteins found on the membrane or surface of cells. Cell Surface Glycoproteins,Surface Glycoproteins,Cell Surface Glycoprotein,Membrane Glycoprotein,Surface Glycoprotein,Glycoprotein, Cell Surface,Glycoprotein, Membrane,Glycoprotein, Surface,Glycoproteins, Cell Surface,Glycoproteins, Membrane,Glycoproteins, Surface,Surface Glycoprotein, Cell,Surface Glycoproteins, Cell
D008860 Microscopy, Ultraviolet Microscopy in which the image is formed by ultraviolet radiation and is displayed and recorded by means of photographic film. Ultraviolet Microscopy,Microscopies, Ultraviolet,Ultraviolet Microscopies
D003520 Cyclophosphamide Precursor of an alkylating nitrogen mustard antineoplastic and immunosuppressive agent that must be activated in the LIVER to form the active aldophosphamide. It has been used in the treatment of LYMPHOMA and LEUKEMIA. Its side effect, ALOPECIA, has been used for defleecing sheep. Cyclophosphamide may also cause sterility, birth defects, mutations, and cancer. (+,-)-2-(bis(2-Chloroethyl)amino)tetrahydro-2H-1,3,2-oxazaphosphorine 2-Oxide Monohydrate,B-518,Cyclophosphamide Anhydrous,Cyclophosphamide Monohydrate,Cyclophosphamide, (R)-Isomer,Cyclophosphamide, (S)-Isomer,Cyclophosphane,Cytophosphan,Cytophosphane,Cytoxan,Endoxan,NSC-26271,Neosar,Procytox,Sendoxan,B 518,B518,NSC 26271,NSC26271
D003922 Diabetes Mellitus, Type 1 A subtype of DIABETES MELLITUS that is characterized by INSULIN deficiency. It is manifested by the sudden onset of severe HYPERGLYCEMIA, rapid progression to DIABETIC KETOACIDOSIS, and DEATH unless treated with insulin. The disease may occur at any age, but is most common in childhood or adolescence. Diabetes Mellitus, Brittle,Diabetes Mellitus, Insulin-Dependent,Diabetes Mellitus, Juvenile-Onset,Diabetes Mellitus, Ketosis-Prone,Diabetes Mellitus, Sudden-Onset,Diabetes, Autoimmune,IDDM,Autoimmune Diabetes,Diabetes Mellitus, Insulin-Dependent, 1,Diabetes Mellitus, Type I,Insulin-Dependent Diabetes Mellitus 1,Juvenile-Onset Diabetes,Type 1 Diabetes,Type 1 Diabetes Mellitus,Brittle Diabetes Mellitus,Diabetes Mellitus, Insulin Dependent,Diabetes Mellitus, Juvenile Onset,Diabetes Mellitus, Ketosis Prone,Diabetes Mellitus, Sudden Onset,Diabetes, Juvenile-Onset,Diabetes, Type 1,Insulin Dependent Diabetes Mellitus 1,Insulin-Dependent Diabetes Mellitus,Juvenile Onset Diabetes,Juvenile-Onset Diabetes Mellitus,Ketosis-Prone Diabetes Mellitus,Sudden-Onset Diabetes Mellitus
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

S Redd, and S Ginn, and J M Ross
November 2003, Annals of the New York Academy of Sciences,
S Redd, and S Ginn, and J M Ross
November 2003, Annals of the New York Academy of Sciences,
S Redd, and S Ginn, and J M Ross
October 2006, Annals of the New York Academy of Sciences,
S Redd, and S Ginn, and J M Ross
March 2001, DNA and cell biology,
Copied contents to your clipboard!