Solution structure of the DNA-binding domain of the tomato heat-stress transcription factor HSF24. 1996

J Schultheiss, and O Kunert, and U Gase, and K D Scharf, and L Nover, and H Rüterjans
Department of Biophysical Chemistry, Biocenter of the Goethe-Universität, Frankfurt, Germany.

Two-dimensional-NMR and three-dimensional-NMR experiments were performed to determine the solution structure of the DNA-binding domain of the tomato heat-stress transcription factor HSF24. Samples of uniformly 15N-labeled and 15N, 13C-labeled recombinant proteins were used in the investigation. A near-complete assignment of the backbone 1H, 15N, and 13C resonances was obtained by three-dimensional triple-resonance experiments, whereas three-dimensional 15N-TOCSY-heteronuclear-single-quantum-correlation-spectroscopy, HCCH-COSY and HCCH-TOCSY spectra were recorded for side-chain assignments, 885 non-redundant distance constraints from two-dimensional-homonuclear and three-dimensional-15N-edited and 13C-edited NOESY spectra and 40 hydrogen-bond constraints from exchange experiments were used for structure calculations. The resulting three-dimensional structure contains a three-helix bundle and a small four-stranded antiparallel beta-sheet that forms a hydrophobic core. The two C-terminal helices are parts of a highly conserved helix-turn-helix motif that is probably involved in DNA recognition and binding. In contrast to heat-stress factors from yeast and animals, the plant heat-stress factors lack a loop of 11 amino acid residues inserted between beta3 and beta4. This leads to a tight turn between these beta-strands.

UI MeSH Term Description Entries
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D010940 Plant Proteins Proteins found in plants (flowers, herbs, shrubs, trees, etc.). The concept does not include proteins found in vegetables for which PLANT PROTEINS, DIETARY is available. Plant Protein,Protein, Plant,Proteins, Plant
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D003198 Computer Simulation Computer-based representation of physical systems and phenomena such as chemical processes. Computational Modeling,Computational Modelling,Computer Models,In silico Modeling,In silico Models,In silico Simulation,Models, Computer,Computerized Models,Computer Model,Computer Simulations,Computerized Model,In silico Model,Model, Computer,Model, Computerized,Model, In silico,Modeling, Computational,Modeling, In silico,Modelling, Computational,Simulation, Computer,Simulation, In silico,Simulations, Computer
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D006360 Heat-Shock Proteins Proteins which are synthesized in eukaryotic organisms and bacteria in response to hyperthermia and other environmental stresses. They increase thermal tolerance and perform functions essential to cell survival under these conditions. Stress Protein,Stress Proteins,Heat-Shock Protein,Heat Shock Protein,Heat Shock Proteins,Protein, Stress

Related Publications

J Schultheiss, and O Kunert, and U Gase, and K D Scharf, and L Nover, and H Rüterjans
September 1994, Nature structural biology,
J Schultheiss, and O Kunert, and U Gase, and K D Scharf, and L Nover, and H Rüterjans
April 2023, Biochemical and biophysical research communications,
J Schultheiss, and O Kunert, and U Gase, and K D Scharf, and L Nover, and H Rüterjans
January 1994, Science (New York, N.Y.),
J Schultheiss, and O Kunert, and U Gase, and K D Scharf, and L Nover, and H Rüterjans
October 1994, Protein science : a publication of the Protein Society,
J Schultheiss, and O Kunert, and U Gase, and K D Scharf, and L Nover, and H Rüterjans
May 2001, Biochemistry,
J Schultheiss, and O Kunert, and U Gase, and K D Scharf, and L Nover, and H Rüterjans
December 2004, Biochemistry,
J Schultheiss, and O Kunert, and U Gase, and K D Scharf, and L Nover, and H Rüterjans
February 2000, Journal of molecular biology,
J Schultheiss, and O Kunert, and U Gase, and K D Scharf, and L Nover, and H Rüterjans
December 2004, The Plant cell,
J Schultheiss, and O Kunert, and U Gase, and K D Scharf, and L Nover, and H Rüterjans
August 2001, Genes & development,
J Schultheiss, and O Kunert, and U Gase, and K D Scharf, and L Nover, and H Rüterjans
January 2017, The Plant journal : for cell and molecular biology,
Copied contents to your clipboard!