Mechanisms that initiate spontaneous network activity in the developing chick spinal cord. 2001

P Wenner, and M J O'Donovan
Laboratory of Neural Control, Section on Developmental Neurobiology, National Institute of Neurological Disorders and Stroke/NIH, 49 Convent Drive, Bethesda, MD 20892, USA.

Many developing networks exhibit a transient period of spontaneous activity that is believed to be important developmentally. Here we investigate the initiation of spontaneous episodes of rhythmic activity in the embryonic chick spinal cord. These episodes recur regularly and are separated by quiescent intervals of many minutes. We examined the role of motoneurons and their intraspinal synaptic targets (R-interneurons) in the initiation of these episodes. During the latter part of the inter-episode interval, we recorded spontaneous, transient ventral root depolarizations that were accompanied by small, spatially diffuse fluorescent signals from interneurons retrogradely labeled with a calcium-sensitive dye. A transient often could be resolved at episode onset and was accompanied by an intense pre-episode (approximately 500 ms) motoneuronal discharge (particularly in adductor and sartorius) but not by interneuronal discharge monitored from the ventrolateral funiculus (VLF). An important role for this pre-episode motoneuron discharge was suggested by the finding that electrical stimulation of motor axons, sufficient to activate R-interneurons, could trigger episodes prematurely. This effect was mediated through activation of R-interneurons because it was prevented by pharmacological blockade of either the cholinergic motoneuronal inputs to R-interneurons or the GABAergic outputs from R-interneurons to other interneurons. Whole-cell recording from R-interneurons and imaging of calcium dye-labeled interneurons established that R-interneuron cell bodies were located dorsomedial to the lateral motor column (R-interneuron region). This region became active before other labeled interneurons when an episode was triggered by motor axon stimulation. At the beginning of a spontaneous episode, whole-cell recordings revealed that R-interneurons fired a high-frequency burst of spikes and optical recordings demonstrated that the R-interneuron region became active before other labeled interneurons. In the presence of cholinergic blockade, however, episode initiation slowed and the inter-episode interval lengthened. In addition, optical activity recorded from the R-interneuron region no longer led that of other labeled interneurons. Instead the initial activity occurred bilaterally in the region medial to the motor column and encompassing the central canal. These findings are consistent with the hypothesis that transient depolarizations and firing in motoneurons, originating from random fluctuations of interneuronal synaptic activity, activate R-interneurons, which then trigger the recruitment of the rest of the spinal interneuronal network. This unusual function for R-interneurons is likely to arise because the output of these interneurons is functionally excitatory during development.

UI MeSH Term Description Entries
D007395 Interneurons Most generally any NEURONS which are not motor or sensory. Interneurons may also refer to neurons whose AXONS remain within a particular brain region in contrast to projection neurons, which have axons projecting to other brain regions. Intercalated Neurons,Intercalated Neuron,Interneuron,Neuron, Intercalated,Neurons, Intercalated
D008464 Mecamylamine A nicotinic antagonist that is well absorbed from the gastrointestinal tract and crosses the blood-brain barrier. Mecamylamine has been used as a ganglionic blocker in treating hypertension, but, like most ganglionic blockers, is more often used now as a research tool.
D009046 Motor Neurons Neurons which activate MUSCLE CELLS. Neurons, Motor,Alpha Motorneurons,Motoneurons,Motor Neurons, Alpha,Neurons, Alpha Motor,Alpha Motor Neuron,Alpha Motor Neurons,Alpha Motorneuron,Motoneuron,Motor Neuron,Motor Neuron, Alpha,Motorneuron, Alpha,Motorneurons, Alpha,Neuron, Alpha Motor,Neuron, Motor
D009434 Neural Pathways Neural tracts connecting one part of the nervous system with another. Neural Interconnections,Interconnection, Neural,Interconnections, Neural,Neural Interconnection,Neural Pathway,Pathway, Neural,Pathways, Neural
D009930 Organic Chemicals A broad class of substances containing carbon and its derivatives. Many of these chemicals will frequently contain hydrogen with or without oxygen, nitrogen, sulfur, phosphorus, and other elements. They exist in either carbon chain or carbon ring form. Organic Chemical,Chemical, Organic,Chemicals, Organic
D002642 Chick Embryo The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching. Embryo, Chick,Chick Embryos,Embryos, Chick
D005456 Fluorescent Dyes Chemicals that emit light after excitation by light. The wave length of the emitted light is usually longer than that of the incident light. Fluorochromes are substances that cause fluorescence in other substances, i.e., dyes used to mark or label other compounds with fluorescent tags. Flourescent Agent,Fluorescent Dye,Fluorescent Probe,Fluorescent Probes,Fluorochrome,Fluorochromes,Fluorogenic Substrates,Fluorescence Agents,Fluorescent Agents,Fluorogenic Substrate,Agents, Fluorescence,Agents, Fluorescent,Dyes, Fluorescent,Probes, Fluorescent,Substrates, Fluorogenic
D005730 Ganglionic Blockers Agents having as their major action the interruption of neural transmission at nicotinic receptors on postganglionic autonomic neurons. Because their actions are so broad, including blocking of sympathetic and parasympathetic systems, their therapeutic use has been largely supplanted by more specific drugs. They may still be used in the control of blood pressure in patients with acute dissecting aortic aneurysm and for the induction of hypotension in surgery. Ganglionic Blocking Agents,Ganglioplegic Agents,Blocking Agents, Ganglionic,Ganglionic Blockaders,Agents, Ganglionic Blocking,Agents, Ganglioplegic,Blockaders, Ganglionic,Blockers, Ganglionic
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

P Wenner, and M J O'Donovan
August 1972, Brain research,
P Wenner, and M J O'Donovan
November 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience,
P Wenner, and M J O'Donovan
April 2000, The Journal of neuroscience : the official journal of the Society for Neuroscience,
P Wenner, and M J O'Donovan
September 1968, The Journal of experimental zoology,
P Wenner, and M J O'Donovan
January 1991, Neirofiziologiia = Neurophysiology,
P Wenner, and M J O'Donovan
August 1981, Developmental biology,
P Wenner, and M J O'Donovan
November 2001, The Journal of neuroscience : the official journal of the Society for Neuroscience,
P Wenner, and M J O'Donovan
January 2008, Cellular and molecular life sciences : CMLS,
P Wenner, and M J O'Donovan
April 2005, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Copied contents to your clipboard!