Calcium imaging of rhythmic network activity in the developing spinal cord of the chick embryo. 1994

M O'Donovan, and S Ho, and W Yee
Section on Developmental Neurobiology, NINDS, NIH, Bethesda, Maryland 20892.

Video-rate imaging of spinal neurons loaded with calcium-sensitive dyes was used to investigate the calcium dynamics and cellular organization of spontaneously active rhythm-generating networks in the spinal cord of E9-E12 chick embryos. Spinal neurons were loaded with bath-applied fura-2am. Motoneurons were also loaded by retrograde labeling with dextran-conjugated, calcium-sensitive dyes. Dye-filled motoneurons exhibited large fluorescent changes during antidromic stimulation of motor nerves, and an increase in the 340/380 fura fluorescence ratio that is indicative of increased intracellular free calcium. Rhythmic fluorescence changes in phase with motoneuron electrical activity were recorded from motoneurons and interneurons during episodes of evoked or spontaneous rhythmic motor activity. Fluorescent responses were present in the cytosol and in the perinuclear region, during antidromic stimulation and network-driven rhythmic activity. Optically active cells were mapped during rhythmic activity, revealing a widespread distribution in the transverse and horizontal planes of the spinal cord with the highest proportion in the ventrolateral part of the cord. Fluorescent signals were synchronized in different regions of the cord and were similar in time course in the lateral motor column and in the intermediate region. In the dorsal region the rhythm was less pronounced and the signal decayed after a large initial transient. Video-rate fluorescent measurements from individual cells confirmed that fluorescent signals were synchronized in interneurons and in motoneurons although the time course of the signal could vary between cells. Some of the interneurons exhibited tonic elevations of fluorescence for the duration of the episode whereas others were rhythmically active in phase with motoneurons. At the onset of each cycle of rhythmic activity the earliest fluorescent change occurred ventrolaterally, in and around the lateral motor column, from which it spread to the rest of the cord. The results suggest that neurons in the ventrolateral part of the spinal cord are important for rhythmogenesis and that axons traveling in the ventrolateral white matter may be involved in the rhythmic excitation of motoneurons and interneurons. The widespread synchrony of the rhythmic calcium transients may reflect the existence of extensive excitatory interconnections between spinal neurons. The network-driven calcium elevations in the cytosol and the perinuclear region may be important in mediating activity-dependent effects on the development of spinal neurons and networks.

UI MeSH Term Description Entries
D009046 Motor Neurons Neurons which activate MUSCLE CELLS. Neurons, Motor,Alpha Motorneurons,Motoneurons,Motor Neurons, Alpha,Neurons, Alpha Motor,Alpha Motor Neuron,Alpha Motor Neurons,Alpha Motorneuron,Motoneuron,Motor Neuron,Motor Neuron, Alpha,Motorneuron, Alpha,Motorneurons, Alpha,Neuron, Alpha Motor,Neuron, Motor
D009415 Nerve Net A meshlike structure composed of interconnecting nerve cells that are separated at the synaptic junction or joined to one another by cytoplasmic processes. In invertebrates, for example, the nerve net allows nerve impulses to spread over a wide area of the net because synapses can pass information in any direction. Neural Networks (Anatomic),Nerve Nets,Net, Nerve,Nets, Nerve,Network, Neural (Anatomic),Networks, Neural (Anatomic),Neural Network (Anatomic)
D010507 Periodicity The tendency of a phenomenon to recur at regular intervals; in biological systems, the recurrence of certain activities (including hormonal, cellular, neural) may be annual, seasonal, monthly, daily, or more frequently (ultradian). Cyclicity,Rhythmicity,Biological Rhythms,Bioperiodicity,Biorhythms,Biological Rhythm,Bioperiodicities,Biorhythm,Cyclicities,Periodicities,Rhythm, Biological,Rhythmicities,Rhythms, Biological
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002642 Chick Embryo The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching. Embryo, Chick,Chick Embryos,Embryos, Chick
D005071 Evoked Potentials Electrical responses recorded from nerve, muscle, SENSORY RECEPTOR, or area of the CENTRAL NERVOUS SYSTEM following stimulation. They range from less than a microvolt to several microvolts. The evoked potential can be auditory (EVOKED POTENTIALS, AUDITORY), somatosensory (EVOKED POTENTIALS, SOMATOSENSORY), visual (EVOKED POTENTIALS, VISUAL), or motor (EVOKED POTENTIALS, MOTOR), or other modalities that have been reported. Event Related Potential,Event-Related Potentials,Evoked Potential,N100 Evoked Potential,P50 Evoked Potential,N1 Wave,N100 Evoked Potentials,N2 Wave,N200 Evoked Potentials,N3 Wave,N300 Evoked Potentials,N4 Wave,N400 Evoked Potentials,P2 Wave,P200 Evoked Potentials,P50 Evoked Potentials,P50 Wave,P600 Evoked Potentials,Potentials, Event-Related,Event Related Potentials,Event-Related Potential,Evoked Potential, N100,Evoked Potential, N200,Evoked Potential, N300,Evoked Potential, N400,Evoked Potential, P200,Evoked Potential, P50,Evoked Potential, P600,Evoked Potentials, N100,Evoked Potentials, N200,Evoked Potentials, N300,Evoked Potentials, N400,Evoked Potentials, P200,Evoked Potentials, P50,Evoked Potentials, P600,N1 Waves,N2 Waves,N200 Evoked Potential,N3 Waves,N300 Evoked Potential,N4 Waves,N400 Evoked Potential,P2 Waves,P200 Evoked Potential,P50 Waves,P600 Evoked Potential,Potential, Event Related,Potential, Event-Related,Potential, Evoked,Potentials, Event Related,Potentials, Evoked,Potentials, N400 Evoked,Related Potential, Event,Related Potentials, Event,Wave, N1,Wave, N2,Wave, N3,Wave, N4,Wave, P2,Wave, P50,Waves, N1,Waves, N2,Waves, N3,Waves, N4,Waves, P2,Waves, P50
D005314 Embryonic and Fetal Development Morphological and physiological development of EMBRYOS or FETUSES. Embryo and Fetal Development,Prenatal Programming,Programming, Prenatal
D005453 Fluorescence The property of emitting radiation while being irradiated. The radiation emitted is usually of longer wavelength than that incident or absorbed, e.g., a substance can be irradiated with invisible radiation and emit visible light. X-ray fluorescence is used in diagnosis.
D005456 Fluorescent Dyes Chemicals that emit light after excitation by light. The wave length of the emitted light is usually longer than that of the incident light. Fluorochromes are substances that cause fluorescence in other substances, i.e., dyes used to mark or label other compounds with fluorescent tags. Flourescent Agent,Fluorescent Dye,Fluorescent Probe,Fluorescent Probes,Fluorochrome,Fluorochromes,Fluorogenic Substrates,Fluorescence Agents,Fluorescent Agents,Fluorogenic Substrate,Agents, Fluorescence,Agents, Fluorescent,Dyes, Fluorescent,Probes, Fluorescent,Substrates, Fluorogenic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

M O'Donovan, and S Ho, and W Yee
January 1987, Neirofiziologiia = Neurophysiology,
M O'Donovan, and S Ho, and W Yee
May 2005, Cell calcium,
M O'Donovan, and S Ho, and W Yee
September 2001, Journal of neurophysiology,
M O'Donovan, and S Ho, and W Yee
May 1975, Developmental biology,
M O'Donovan, and S Ho, and W Yee
August 1972, Brain research,
M O'Donovan, and S Ho, and W Yee
January 1986, International journal of developmental neuroscience : the official journal of the International Society for Developmental Neuroscience,
M O'Donovan, and S Ho, and W Yee
December 2002, Brain research. Developmental brain research,
M O'Donovan, and S Ho, and W Yee
January 1977, Acta anatomica,
M O'Donovan, and S Ho, and W Yee
November 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Copied contents to your clipboard!