PDE4 cAMP-specific phosphodiesterases. 2001

M D Houslay
Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Scotland, United Kingdom. M.Houslay@bio.gla.ac.uk

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000242 Cyclic AMP An adenine nucleotide containing one phosphate group which is esterified to both the 3'- and 5'-positions of the sugar moiety. It is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon, and ACTH. Adenosine Cyclic 3',5'-Monophosphate,Adenosine Cyclic 3,5 Monophosphate,Adenosine Cyclic Monophosphate,Adenosine Cyclic-3',5'-Monophosphate,Cyclic AMP, (R)-Isomer,Cyclic AMP, Disodium Salt,Cyclic AMP, Monoammonium Salt,Cyclic AMP, Monopotassium Salt,Cyclic AMP, Monosodium Salt,Cyclic AMP, Sodium Salt,3',5'-Monophosphate, Adenosine Cyclic,AMP, Cyclic,Adenosine Cyclic 3',5' Monophosphate,Cyclic 3',5'-Monophosphate, Adenosine,Cyclic Monophosphate, Adenosine,Cyclic-3',5'-Monophosphate, Adenosine,Monophosphate, Adenosine Cyclic
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015105 3',5'-Cyclic-AMP Phosphodiesterases Enzymes that catalyze the hydrolysis of CYCLIC AMP to form adenosine 5'-phosphate. The enzymes are widely distributed in animal tissue and control the level of intracellular cyclic AMP. Many specific enzymes classified under this heading demonstrate additional spcificity for 3',5'-cyclic IMP and CYCLIC GMP. 3',5'-Cyclic AMP 5'-Nucleotidohydrolase,3',5'-Cyclic-Nucleotide Phosphodiesterase,CAMP Phosphodiesterase,3',5' Cyclic AMP Phosphodiesterase,3',5'-Cyclic AMP Phosphodiesterase,3',5'-Cyclic Nucleotide Phosphodiesterase,3',5'-Cyclic-AMP Phosphodiesterase,3',5'-Nucleotide Phosphodiesterase,3,5-Cyclic AMP 5-Nucleotidohydrolase,3,5-Cyclic AMP Phosphodiesterase,3',5' Cyclic AMP 5' Nucleotidohydrolase,3',5' Cyclic AMP Phosphodiesterases,3',5' Cyclic Nucleotide Phosphodiesterase,3',5' Nucleotide Phosphodiesterase,3,5 Cyclic AMP 5 Nucleotidohydrolase,3,5 Cyclic AMP Phosphodiesterase,5'-Nucleotidohydrolase, 3',5'-Cyclic AMP,5-Nucleotidohydrolase, 3,5-Cyclic AMP,AMP 5'-Nucleotidohydrolase, 3',5'-Cyclic,AMP 5-Nucleotidohydrolase, 3,5-Cyclic,AMP Phosphodiesterase, 3',5'-Cyclic,AMP Phosphodiesterase, 3,5-Cyclic,Nucleotide Phosphodiesterase, 3',5'-Cyclic,Phosphodiesterase, 3',5'-Cyclic AMP,Phosphodiesterase, 3',5'-Cyclic Nucleotide,Phosphodiesterase, 3',5'-Cyclic-AMP,Phosphodiesterase, 3',5'-Cyclic-Nucleotide,Phosphodiesterase, 3',5'-Nucleotide,Phosphodiesterase, 3,5-Cyclic AMP,Phosphodiesterase, CAMP,Phosphodiesterases, 3',5'-Cyclic-AMP

Related Publications

M D Houslay
February 2003, The Journal of biological chemistry,
M D Houslay
January 2018, Journal of cardiovascular development and disease,
M D Houslay
March 2003, Asian journal of andrology,
M D Houslay
September 1990, Seikagaku. The Journal of Japanese Biochemical Society,
M D Houslay
January 1995, Platelets,
Copied contents to your clipboard!