Precise excision of bacteriophage Mu DNA. 2001

C Abbes, and G Sezonov, and D Joseleau-Petit, and R D'Ari, and J C Liébart
Institut Jacques Monod, Centre National de la Recherche Scientifique (CNRS), Université Paris 6, Université Paris 7, France.

The temperate bacteriophage Mu is a transposable element that can integrate randomly into bacterial DNA, thereby creating mutations. Mutants due to an integrated Mu prophage do not give rise to revertants, as if Mu, unlike other transposable elements, were unable to excise precisely. In the present work, starting with a lacZ::Muc62(Ts) strain unable to form Lac+ colonies, we cloned a lacZ+ gene in vivo on a mini-Mu plasmid, under conditions of prophage induction. In all lac+ plasmids recovered, the wild-type sequence was restored in the region where the Mu prophage had been integrated. The recovery of lacZ+ genes shows that precise excision of Mu does indeed take place; the absence of Lac+ colonies suggests that precise excision events are systematically associated with loss of colony-forming ability.

UI MeSH Term Description Entries
D010583 Bacteriophage mu A temperate coliphage, in the genus Mu-like viruses, family MYOVIRIDAE, composed of a linear, double-stranded molecule of DNA, which is able to insert itself randomly at any point on the host chromosome. It frequently causes a mutation by interrupting the continuity of the bacterial OPERON at the site of insertion. Coliphage mu,Enterobacteria phage Mu,Phage mu,mu Phage,mu Phages
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D004251 DNA Transposable Elements Discrete segments of DNA which can excise and reintegrate to another site in the genome. Most are inactive, i.e., have not been found to exist outside the integrated state. DNA transposable elements include bacterial IS (insertion sequence) elements, Tn elements, the maize controlling elements Ac and Ds, Drosophila P, gypsy, and pogo elements, the human Tigger elements and the Tc and mariner elements which are found throughout the animal kingdom. DNA Insertion Elements,DNA Transposons,IS Elements,Insertion Sequence Elements,Tn Elements,Transposable Elements,Elements, Insertion Sequence,Sequence Elements, Insertion,DNA Insertion Element,DNA Transposable Element,DNA Transposon,Element, DNA Insertion,Element, DNA Transposable,Element, IS,Element, Insertion Sequence,Element, Tn,Element, Transposable,Elements, DNA Insertion,Elements, DNA Transposable,Elements, IS,Elements, Tn,Elements, Transposable,IS Element,Insertion Element, DNA,Insertion Elements, DNA,Insertion Sequence Element,Sequence Element, Insertion,Tn Element,Transposable Element,Transposable Element, DNA,Transposable Elements, DNA,Transposon, DNA,Transposons, DNA
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D014775 Virus Activation The mechanism by which latent viruses, such as genetically transmitted tumor viruses (PROVIRUSES) or PROPHAGES of lysogenic bacteria, are induced to replicate and then released as infectious viruses. It may be effected by various endogenous and exogenous stimuli, including B-cell LIPOPOLYSACCHARIDES, glucocorticoid hormones, halogenated pyrimidines, IONIZING RADIATION, ultraviolet light, and superinfecting viruses. Prophage Excision,Prophage Induction,Virus Induction,Viral Activation,Activation, Viral,Activation, Virus,Activations, Viral,Activations, Virus,Excision, Prophage,Excisions, Prophage,Induction, Prophage,Induction, Virus,Inductions, Prophage,Inductions, Virus,Prophage Excisions,Prophage Inductions,Viral Activations,Virus Activations,Virus Inductions
D016254 Mutagenesis, Insertional Mutagenesis where the mutation is caused by the introduction of foreign DNA sequences into a gene or extragenic sequence. This may occur spontaneously in vivo or be experimentally induced in vivo or in vitro. Proviral DNA insertions into or adjacent to a cellular proto-oncogene can interrupt GENETIC TRANSLATION of the coding sequences or interfere with recognition of regulatory elements and cause unregulated expression of the proto-oncogene resulting in tumor formation. Gene Insertion,Insertion Mutation,Insertional Activation,Insertional Mutagenesis,Linker-Insertion Mutagenesis,Mutagenesis, Cassette,Sequence Insertion,Viral Insertional Mutagenesis,Activation, Insertional,Activations, Insertional,Cassette Mutagenesis,Gene Insertions,Insertion Mutations,Insertion, Gene,Insertion, Sequence,Insertional Activations,Insertional Mutagenesis, Viral,Insertions, Gene,Insertions, Sequence,Linker Insertion Mutagenesis,Mutagenesis, Linker-Insertion,Mutagenesis, Viral Insertional,Mutation, Insertion,Mutations, Insertion,Sequence Insertions

Related Publications

C Abbes, and G Sezonov, and D Joseleau-Petit, and R D'Ari, and J C Liébart
May 1987, Molecular & general genetics : MGG,
C Abbes, and G Sezonov, and D Joseleau-Petit, and R D'Ari, and J C Liébart
July 1970, Virology,
C Abbes, and G Sezonov, and D Joseleau-Petit, and R D'Ari, and J C Liébart
December 1976, Nature,
C Abbes, and G Sezonov, and D Joseleau-Petit, and R D'Ari, and J C Liébart
January 1979, Cold Spring Harbor symposia on quantitative biology,
C Abbes, and G Sezonov, and D Joseleau-Petit, and R D'Ari, and J C Liébart
February 1976, Cell,
C Abbes, and G Sezonov, and D Joseleau-Petit, and R D'Ari, and J C Liébart
January 1981, Cold Spring Harbor symposia on quantitative biology,
C Abbes, and G Sezonov, and D Joseleau-Petit, and R D'Ari, and J C Liébart
January 1973, Virology,
C Abbes, and G Sezonov, and D Joseleau-Petit, and R D'Ari, and J C Liébart
November 1979, Journal of virology,
C Abbes, and G Sezonov, and D Joseleau-Petit, and R D'Ari, and J C Liébart
January 1983, Journal of bacteriology,
C Abbes, and G Sezonov, and D Joseleau-Petit, and R D'Ari, and J C Liébart
April 1983, The Journal of biological chemistry,
Copied contents to your clipboard!