Unusual modification of bacteriophage Mu DNA. 1979

S Hattman

Bacteriophage Mu DNA was labeled after induction in the presence of [2-(3)H]adenine or [8-(3)H]adenine. Both Mu mom(+).dam(+) DNA and Mu mom(-).dam(+) DNA have similar N(6)-methyladenine (MeAde) contents, as well as similar frequencies of MeAde nearest neighbors. Both DNAs are sensitive to in vitro cleavage by R.DpnI but resistant to cleavage by R.DpnII. These results indicate that the mom(+) protein does not alter the sequence specificity of the host dam(+) methylase to produce MeAde at new sites. However, we have discovered a new modified base, denoted A(x), in Mu mom(+).dam(+) DNA; approximately 15% of the adenine residues are modified to A(x). Although the precise nature of the modification is not yet defined, analysis by electrophoresis and chromatography indicates that the N(6)-amino group is not the site of modification, and that the added moiety contains a free carboxyl group. A(x) is not present in Mu mom(+).dam(+) or Mu mom(-).dam(+) phage DNA or in cellular DNA from uninduced Mu mom(+).dam(+) lysogens. These results suggest that expression of the dam(+) and mom(+) genes are required for the A(x) modification and that this modification is responsible for protecting Mu DNA against certain restriction nucleases. Mu mom(+).dam(-) DNA and Mu mom(-).dam(-) DNA contain a very low level of MeAde (ca. 1 MeAde per 5,000 adenine residues). Since the only nearest neighbor to MeAde appears to be cytosine, we suggest that the methylated sequence is 5'... C-A(*)-C... 3' and that this methylation is mediated by the EcoK modification enzyme.

UI MeSH Term Description Entries
D008745 Methylation Addition of methyl groups. In histo-chemistry methylation is used to esterify carboxyl groups and remove sulfate groups by treating tissue sections with hot methanol in the presence of hydrochloric acid. (From Stedman, 25th ed) Methylations
D008780 Methyltransferases A subclass of enzymes of the transferase class that catalyze the transfer of a methyl group from one compound to another. (Dorland, 28th ed) EC 2.1.1. Methyltransferase
D010583 Bacteriophage mu A temperate coliphage, in the genus Mu-like viruses, family MYOVIRIDAE, composed of a linear, double-stranded molecule of DNA, which is able to insert itself randomly at any point on the host chromosome. It frequently causes a mutation by interrupting the continuity of the bacterial OPERON at the site of insertion. Coliphage mu,Enterobacteria phage Mu,Phage mu,mu Phage,mu Phages
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D000225 Adenine A purine base and a fundamental unit of ADENINE NUCLEOTIDES. Vitamin B 4,4, Vitamin B,B 4, Vitamin
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

S Hattman
July 1970, Virology,
S Hattman
December 1976, Nature,
S Hattman
January 1979, Cold Spring Harbor symposia on quantitative biology,
S Hattman
January 1983, Cold Spring Harbor symposia on quantitative biology,
S Hattman
January 1981, Cold Spring Harbor symposia on quantitative biology,
S Hattman
January 1973, Virology,
S Hattman
August 2001, Canadian journal of microbiology,
S Hattman
April 1983, The Journal of biological chemistry,
Copied contents to your clipboard!