Melatonin inhibits high voltage activated calcium currents in cultured rat dorsal root ganglion neurones. 2001

A Ayar, and D J Martin, and M Ozcan, and H Kelestimur
Firat University, Faculty of Medicine, Department of Pharmacology, TR-23200 Elazig, Turkey. a.ayar@mailexcite.com

The actions of melatonin on high-voltage activated calcium channels (HVACC) and intracellular free Ca(2+) concentration in cultured dorsal root ganglion (DRG) neurones from neonatal rats were investigated using the whole-cell patch clamp and the fura-2 fluorescence ratio Ca(2+)-imaging techniques. HVACC were pharmacologically and biophysically isolated and the effects of melatonin were investigated. Extracellular application of melatonin inhibited HVACC in a dose dependent manner. In calcium imaging experiments, application of extracellular recording medium containing 30 mM KCl evoked increases in intracellular free Ca(2+) that were dependent upon external Ca(2+) ions. This increase was prevented by both low (10 microM) and high dose (100 microM) of melatonin pre-treatment. The results of this study indicate that the pineal hormone melatonin has inhibitory actions on voltage dependent calcium entry in cultured rat DRG neurones.

UI MeSH Term Description Entries
D008550 Melatonin A biogenic amine that is found in animals and plants. In mammals, melatonin is produced by the PINEAL GLAND. Its secretion increases in darkness and decreases during exposure to light. Melatonin is implicated in the regulation of SLEEP, mood, and REPRODUCTION. Melatonin is also an effective antioxidant.
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009475 Neurons, Afferent Neurons which conduct NERVE IMPULSES to the CENTRAL NERVOUS SYSTEM. Afferent Neurons,Afferent Neuron,Neuron, Afferent
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D005456 Fluorescent Dyes Chemicals that emit light after excitation by light. The wave length of the emitted light is usually longer than that of the incident light. Fluorochromes are substances that cause fluorescence in other substances, i.e., dyes used to mark or label other compounds with fluorescent tags. Flourescent Agent,Fluorescent Dye,Fluorescent Probe,Fluorescent Probes,Fluorochrome,Fluorochromes,Fluorogenic Substrates,Fluorescence Agents,Fluorescent Agents,Fluorogenic Substrate,Agents, Fluorescence,Agents, Fluorescent,Dyes, Fluorescent,Probes, Fluorescent,Substrates, Fluorogenic
D005727 Ganglia, Spinal Sensory ganglia located on the dorsal spinal roots within the vertebral column. The spinal ganglion cells are pseudounipolar. The single primary branch bifurcates sending a peripheral process to carry sensory information from the periphery and a central branch which relays that information to the spinal cord or brain. Dorsal Root Ganglia,Spinal Ganglia,Dorsal Root Ganglion,Ganglion, Spinal,Ganglia, Dorsal Root,Ganglion, Dorsal Root,Spinal Ganglion
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000927 Anticonvulsants Drugs used to prevent SEIZURES or reduce their severity. Anticonvulsant,Anticonvulsant Drug,Anticonvulsive Agent,Anticonvulsive Drug,Antiepileptic,Antiepileptic Agent,Antiepileptic Agents,Antiepileptic Drug,Anticonvulsant Drugs,Anticonvulsive Agents,Anticonvulsive Drugs,Antiepileptic Drugs,Antiepileptics,Agent, Anticonvulsive,Agent, Antiepileptic,Agents, Anticonvulsive,Agents, Antiepileptic,Drug, Anticonvulsant,Drug, Anticonvulsive,Drug, Antiepileptic,Drugs, Anticonvulsant,Drugs, Anticonvulsive,Drugs, Antiepileptic
D015220 Calcium Channels Voltage-dependent cell membrane glycoproteins selectively permeable to calcium ions. They are categorized as L-, T-, N-, P-, Q-, and R-types based on the activation and inactivation kinetics, ion specificity, and sensitivity to drugs and toxins. The L- and T-types are present throughout the cardiovascular and central nervous systems and the N-, P-, Q-, & R-types are located in neuronal tissue. Ion Channels, Calcium,Receptors, Calcium Channel Blocker,Voltage-Dependent Calcium Channel,Calcium Channel,Calcium Channel Antagonist Receptor,Calcium Channel Antagonist Receptors,Calcium Channel Blocker Receptor,Calcium Channel Blocker Receptors,Ion Channel, Calcium,Receptors, Calcium Channel Antagonist,VDCC,Voltage-Dependent Calcium Channels,Calcium Channel, Voltage-Dependent,Calcium Channels, Voltage-Dependent,Calcium Ion Channel,Calcium Ion Channels,Channel, Voltage-Dependent Calcium,Channels, Voltage-Dependent Calcium,Voltage Dependent Calcium Channel,Voltage Dependent Calcium Channels

Related Publications

A Ayar, and D J Martin, and M Ozcan, and H Kelestimur
January 2002, British journal of pharmacology,
A Ayar, and D J Martin, and M Ozcan, and H Kelestimur
January 2002, Neuroscience letters,
A Ayar, and D J Martin, and M Ozcan, and H Kelestimur
July 1992, British journal of pharmacology,
A Ayar, and D J Martin, and M Ozcan, and H Kelestimur
February 1993, The Journal of physiology,
A Ayar, and D J Martin, and M Ozcan, and H Kelestimur
May 1986, British journal of pharmacology,
A Ayar, and D J Martin, and M Ozcan, and H Kelestimur
November 2005, Brain research,
A Ayar, and D J Martin, and M Ozcan, and H Kelestimur
April 1986, The Journal of physiology,
A Ayar, and D J Martin, and M Ozcan, and H Kelestimur
August 1997, British journal of pharmacology,
A Ayar, and D J Martin, and M Ozcan, and H Kelestimur
April 2005, Brain research,
A Ayar, and D J Martin, and M Ozcan, and H Kelestimur
October 1996, Naunyn-Schmiedeberg's archives of pharmacology,
Copied contents to your clipboard!