Capsazepine block of voltage-activated calcium channels in adult rat dorsal root ganglion neurones in culture. 1997

R J Docherty, and J C Yeats, and A S Piper
Department of Pharmacology, United Medical and Dental Schools of Guy's and St Thomas', London.

1. We have found that capsazepine, a competitive antagonist at the vanilloid (capsaicin) receptor, blocks voltage-activated calcium currents in sensory neurones. 2. The block of calcium current was slow to develop with a half time of about one minute at 100 microM and lasted for the duration of the experiment. The rate of block of calcium current was strongly concentration-dependent. 3. The EC50 for the blocking effect at 0 mV was 7.7 +/- 1.4 microM after 6 min exposure to capsazepine. The EC50 at equilibrium was estimated to be 1.4 +/- 0.2 microM. 4. The block of calcium current showed some voltage-dependence but there was no indication of any selectivity of action for a calcium channel subtype. The characteristics of the blocking action of capsazepine on the residual current of cells which were pretreated with either omega-conotoxin or nimodipine were similar to control. 5. The data suggest that capsazepine, in addition to its competitive antagonism of vanilloid receptors, has a non-specific blocking action on voltage-activated calcium channels which should be taken into account when interpreting the effects of this substance on intact preparations in vitro or in vivo.

UI MeSH Term Description Entries
D008297 Male Males
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D002121 Calcium Channel Blockers A class of drugs that act by selective inhibition of calcium influx through cellular membranes. Calcium Antagonists, Exogenous,Calcium Blockaders, Exogenous,Calcium Channel Antagonist,Calcium Channel Blocker,Calcium Channel Blocking Drug,Calcium Inhibitors, Exogenous,Channel Blockers, Calcium,Exogenous Calcium Blockader,Exogenous Calcium Inhibitor,Calcium Channel Antagonists,Calcium Channel Blocking Drugs,Exogenous Calcium Antagonists,Exogenous Calcium Blockaders,Exogenous Calcium Inhibitors,Antagonist, Calcium Channel,Antagonists, Calcium Channel,Antagonists, Exogenous Calcium,Blockader, Exogenous Calcium,Blocker, Calcium Channel,Blockers, Calcium Channel,Calcium Blockader, Exogenous,Calcium Inhibitor, Exogenous,Channel Antagonist, Calcium,Channel Blocker, Calcium,Inhibitor, Exogenous Calcium
D002211 Capsaicin An alkylamide found in CAPSICUM that acts at TRPV CATION CHANNELS. 8-Methyl-N-Vanillyl-6-Nonenamide,Antiphlogistine Rub A-535 Capsaicin,Axsain,Capsaicine,Capsicum Farmaya,Capsidol,Capsin,Capzasin,Gelcen,Katrum,NGX-4010,Zacin,Zostrix,8 Methyl N Vanillyl 6 Nonenamide,NGX 4010,NGX4010
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D005260 Female Females
D005727 Ganglia, Spinal Sensory ganglia located on the dorsal spinal roots within the vertebral column. The spinal ganglion cells are pseudounipolar. The single primary branch bifurcates sending a peripheral process to carry sensory information from the periphery and a central branch which relays that information to the spinal cord or brain. Dorsal Root Ganglia,Spinal Ganglia,Dorsal Root Ganglion,Ganglion, Spinal,Ganglia, Dorsal Root,Ganglion, Dorsal Root,Spinal Ganglion
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015220 Calcium Channels Voltage-dependent cell membrane glycoproteins selectively permeable to calcium ions. They are categorized as L-, T-, N-, P-, Q-, and R-types based on the activation and inactivation kinetics, ion specificity, and sensitivity to drugs and toxins. The L- and T-types are present throughout the cardiovascular and central nervous systems and the N-, P-, Q-, & R-types are located in neuronal tissue. Ion Channels, Calcium,Receptors, Calcium Channel Blocker,Voltage-Dependent Calcium Channel,Calcium Channel,Calcium Channel Antagonist Receptor,Calcium Channel Antagonist Receptors,Calcium Channel Blocker Receptor,Calcium Channel Blocker Receptors,Ion Channel, Calcium,Receptors, Calcium Channel Antagonist,VDCC,Voltage-Dependent Calcium Channels,Calcium Channel, Voltage-Dependent,Calcium Channels, Voltage-Dependent,Calcium Ion Channel,Calcium Ion Channels,Channel, Voltage-Dependent Calcium,Channels, Voltage-Dependent Calcium,Voltage Dependent Calcium Channel,Voltage Dependent Calcium Channels

Related Publications

R J Docherty, and J C Yeats, and A S Piper
November 2001, Neuroscience letters,
R J Docherty, and J C Yeats, and A S Piper
August 1998, The Journal of physiology,
R J Docherty, and J C Yeats, and A S Piper
February 1993, The Journal of physiology,
R J Docherty, and J C Yeats, and A S Piper
May 2002, Neuroscience letters,
R J Docherty, and J C Yeats, and A S Piper
August 2003, British journal of pharmacology,
R J Docherty, and J C Yeats, and A S Piper
August 2007, Journal of cellular physiology,
R J Docherty, and J C Yeats, and A S Piper
June 1996, The Journal of physiology,
R J Docherty, and J C Yeats, and A S Piper
April 1989, The Journal of physiology,
Copied contents to your clipboard!