Control elements of Dictyostelium discoideum prespore specific gene 3B. 2001

B A Stevens, and P J Flynn, and G A Wilson, and B D Hames
School of Biochemistry and Molecular Biology, University of Leeds, UK.

Expression of the prespore-specific gene 3B in Dictyostelium discoideum Ax-2 cells is first detectable late in development with 3B mRNA levels peaking at 18 h (Corney et al., 1990). Sequence analysis of 3B cDNA and genomic clones revealed two exons, 319bp and 341bp long, separated by an 82bp intron, which encode a 219 residue protein with no significant similarity to any other reported gene product. Transcription starts at an A residue 45bp upstream from the translation initiation codon, preceded by a TATA-like sequence and an oligo-dT stretch. The 5' flanking sequence of the 3B gene is extremely A + T rich but contains five G/C rich stretches, each approximately 7bp long, which have strong sequence similarity to the G boxes found upstream of other developmentally regulated Dictyostelium genes. Analysis of both 3B promoter-CAT reporter gene and 3B promoter-lacZ reporter gene constructs showed that 908bp of 5' flanking sequence is sufficient to confer correct developmental and cell-type specific regulation. Sequential 5' deletion analysis revealed that positive elements lie upstream of position -304 and that negative element(s) lie between positions -264 and -241. Nevertheless, a 286bp promoter fragment containing only sequence located downstream of position -241 directed essentially correct reporter gene expression. Point mutation analysis identified cis-acting elements within this 'sufficient' promoter fragment which activate transcription (G box V and psp-AT type sequences). A short (56bp) region of the 3B promoter sequence containing both G box IV and the psp-AT type element binds two types of nuclear factor, one present in cells throughout development and a second that appears only in late development with a time course comparable to 3B gene induction.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009687 Nuclear Proteins Proteins found in the nucleus of a cell. Do not confuse with NUCLEOPROTEINS which are proteins conjugated with nucleic acids, that are not necessarily present in the nucleus. Nucleolar Protein,Nucleolar Proteins,Nuclear Protein,Protein, Nuclear,Protein, Nucleolar,Proteins, Nuclear,Proteins, Nucleolar
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D012045 Regulatory Sequences, Nucleic Acid Nucleic acid sequences involved in regulating the expression of genes. Nucleic Acid Regulatory Sequences,Regulatory Regions, Nucleic Acid (Genetics),Region, Regulatory,Regions, Regulatory,Regulator Regions, Nucleic Acid,Regulatory Region,Regulatory Regions
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004023 Dictyostelium A genus of protozoa, formerly also considered a fungus. Its natural habitat is decaying forest leaves, where it feeds on bacteria. D. discoideum is the best-known species and is widely used in biomedical research. Dictyostelium discoideum,Dictyostelium discoideums,Dictyosteliums,discoideum, Dictyostelium
D004252 DNA Mutational Analysis Biochemical identification of mutational changes in a nucleotide sequence. Mutational Analysis, DNA,Analysis, DNA Mutational,Analyses, DNA Mutational,DNA Mutational Analyses,Mutational Analyses, DNA
D005656 Fungal Proteins Proteins found in any species of fungus. Fungal Gene Products,Fungal Gene Proteins,Fungal Peptides,Gene Products, Fungal,Yeast Proteins,Gene Proteins, Fungal,Peptides, Fungal,Proteins, Fungal
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

B A Stevens, and P J Flynn, and G A Wilson, and B D Hames
April 1993, Development (Cambridge, England),
B A Stevens, and P J Flynn, and G A Wilson, and B D Hames
November 1996, Biochimica et biophysica acta,
B A Stevens, and P J Flynn, and G A Wilson, and B D Hames
April 1991, Developmental biology,
B A Stevens, and P J Flynn, and G A Wilson, and B D Hames
June 1994, Development (Cambridge, England),
B A Stevens, and P J Flynn, and G A Wilson, and B D Hames
August 2004, Development, growth & differentiation,
B A Stevens, and P J Flynn, and G A Wilson, and B D Hames
April 1983, Cell,
B A Stevens, and P J Flynn, and G A Wilson, and B D Hames
June 1985, Molecular and cellular biology,
B A Stevens, and P J Flynn, and G A Wilson, and B D Hames
October 1989, Nucleic acids research,
B A Stevens, and P J Flynn, and G A Wilson, and B D Hames
January 2004, Journal of basic microbiology,
B A Stevens, and P J Flynn, and G A Wilson, and B D Hames
October 1999, Biochimica et biophysica acta,
Copied contents to your clipboard!