Characterization of a novel Dictyostelium discoideum prespore-specific gene, PspB, reveals conserved regulatory sequences. 1994

J A Powell-Coffman, and R A Firtel
Department of Biology, University of California, San Diego, La Jolla 92093-0634.

While Dictyostelium discoideum has been studied as a developmental system for decades, and many regulatory proteins have been cloned, the molecular mechanisms of cell-type-specific gene expression are poorly understood. In this paper we characterize a novel prespore gene, PspB, and undertake a comparative analysis of the regulatory regions in prespore-specific D. discoideum promoters. Sequence alignment of the PSPB gene product with other prespore-specific proteins identifies a conserved, repeated 12 amino acid cysteine-containing motif that may be involved in spore coat function or assembly. Analysis of the PspB promoter identifies two domains essential for developmentally induced promoter activity. The first region includes two CA-rich elements (CAEs) that we show to be functionally homologous to the cAMP-inducible elements previously identified in the SP60 (cotC) promoter. The PspB CAEs compete with the SP60 (cotC) CAEs for binding in vitro to a developmentally regulated nuclear activity. We identify this activity as G-box Binding Factor, a developmentally induced transcription factor. The PspB CAEs and adjacent nucleotides direct a very low level of prespore-enriched expression, but high levels of cell-type-specific expression requires a second promoter region: a 46-bp AT-rich sequence that does not resemble the CAEs or any other previously described late gene promoter elements. Comparison of the PspB AT element with regulatory regions of the SP60 (cotC), SP70 (cotB), and D19 (pspA) promoters reveals an extensive consensus sequence. We suggest that these AT-rich sequences may represent a common regulatory element (or elements) required for prespore gene activation.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D012045 Regulatory Sequences, Nucleic Acid Nucleic acid sequences involved in regulating the expression of genes. Nucleic Acid Regulatory Sequences,Regulatory Regions, Nucleic Acid (Genetics),Region, Regulatory,Regions, Regulatory,Regulator Regions, Nucleic Acid,Regulatory Region,Regulatory Regions
D004023 Dictyostelium A genus of protozoa, formerly also considered a fungus. Its natural habitat is decaying forest leaves, where it feeds on bacteria. D. discoideum is the best-known species and is widely used in biomedical research. Dictyostelium discoideum,Dictyostelium discoideums,Dictyosteliums,discoideum, Dictyostelium
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D005800 Genes, Fungal The functional hereditary units of FUNGI. Fungal Genes,Fungal Gene,Gene, Fungal
D005809 Genes, Regulator Genes which regulate or circumscribe the activity of other genes; specifically, genes which code for PROTEINS or RNAs which have GENE EXPRESSION REGULATION functions. Gene, Regulator,Regulator Gene,Regulator Genes,Regulatory Genes,Gene, Regulatory,Genes, Regulatory,Regulatory Gene
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D013172 Spores, Fungal Reproductive bodies produced by fungi. Conidia,Fungal Spores,Conidium,Fungal Spore,Spore, Fungal

Related Publications

J A Powell-Coffman, and R A Firtel
September 2001, Differentiation; research in biological diversity,
J A Powell-Coffman, and R A Firtel
April 1993, Development (Cambridge, England),
J A Powell-Coffman, and R A Firtel
October 1999, Biochimica et biophysica acta,
J A Powell-Coffman, and R A Firtel
April 1991, Developmental biology,
J A Powell-Coffman, and R A Firtel
November 1996, Biochimica et biophysica acta,
J A Powell-Coffman, and R A Firtel
August 2004, Development, growth & differentiation,
J A Powell-Coffman, and R A Firtel
December 1971, Development, growth & differentiation,
J A Powell-Coffman, and R A Firtel
July 1997, Development (Cambridge, England),
Copied contents to your clipboard!