The potential antidiabetic activity of some alpha-2 adrenoceptor antagonists. 2001

A O Abdel-Zaher, and I T Ahmed, and A D El-Koussi
Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt.

The effect of alpha-2 adrenoceptor antagonists, yohimbine and efaroxan, on the plasma glucose and insulin levels was studied in non-diabetic control, type-I (insulin-dependent) and type-II (non-insulin-dependent) diabetic rats. Pretreatment with either yohimbine or efaroxan potentiated glucose-induced insulin release in non-diabetic control rats and produced an improvement of the oral glucose tolerance and potentiated glucose-induced insulin release in type-II but not in type-I diabetic rats. Treatment with either yohimbine or efaroxan reduced the plasma glucose level and increased the plasma insulin level of non-diabetic control and type-II diabetic rats but not of type-I diabetic rats. Effects of efaroxan were more marked. Pretreatment of non-diabetic control and type-II diabetic rats with either yohimbine or efaroxan inhibited clonidine-induced hyperglycaemia and suppressed or reversed clonidine-induced hypoinsulinaemia. Also, pretreatment of these animals with either yohimbine or efaroxan enhanced the hypoglycaemic and insulinotropic effects of glibenclamide. The combination of glibenclamide and efaroxan led to a synergistic increase in insulin secretion, while that of glibenclamide and yohimbine led to an additive increase. The hyperglycaemic effect of diazoxide in non-diabetic control and type-II diabetic rats was inhibited by pretreatment with either yohimbine or efaroxan. The hypoinsulinaemic effect of diazoxide in these animals was antagonized and reversed by pretreatment with yohimbine and efaroxan, respectively. In type-I diabetic rats, there was no change in the plasma glucose and insulin levels induced by the treatment of animals with each of clonidine or diazoxide alone or in combination with either yohimbine or efaroxan. Glibenclamide produced a slight decrease in the plasma glucose level of type-I diabetic rats, at the end of the 120 min period of investigation but there was no change in the plasma insulin level. Pretreatment of these animals with either yohimbine or efaroxan produced no change in glibenclamide effects. Additionally, bath application of efaroxan or glibenclamide inhibited the relaxant effects of different concentrations of diazoxide on the isolated norepinephrine-contracted aortic strips, while the application of yohimbine produced insignificant changes. The combination of glibenclamide and efaroxan led to complete inhibition of the relaxant effects of different concentrations of diazoxide, while that of glibenclamide and yohimbine did not produce such an effect. It is concluded that yohimbine, via blockade of postsynaptic alpha-2 adrenoceptors, and efaroxan, via blockade of postsynaptic alpha-2 adrenoceptors and adenosine triphosphate-sensitive potassium channels in the pancreatic beta-cell membrane, produce insulinotropic and subsequent hypoglycaemic effects.

UI MeSH Term Description Entries
D007004 Hypoglycemic Agents Substances which lower blood glucose levels. Antidiabetic,Antidiabetic Agent,Antidiabetic Drug,Antidiabetics,Antihyperglycemic,Antihyperglycemic Agent,Hypoglycemic,Hypoglycemic Agent,Hypoglycemic Drug,Antidiabetic Agents,Antidiabetic Drugs,Antihyperglycemic Agents,Antihyperglycemics,Hypoglycemic Drugs,Hypoglycemic Effect,Hypoglycemic Effects,Hypoglycemics,Agent, Antidiabetic,Agent, Antihyperglycemic,Agent, Hypoglycemic,Agents, Antidiabetic,Agents, Antihyperglycemic,Agents, Hypoglycemic,Drug, Antidiabetic,Drug, Hypoglycemic,Drugs, Antidiabetic,Drugs, Hypoglycemic,Effect, Hypoglycemic,Effects, Hypoglycemic
D007093 Imidazoles Compounds containing 1,3-diazole, a five membered aromatic ring containing two nitrogen atoms separated by one of the carbons. Chemically reduced ones include IMIDAZOLINES and IMIDAZOLIDINES. Distinguish from 1,2-diazole (PYRAZOLES).
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D008297 Male Males
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D001786 Blood Glucose Glucose in blood. Blood Sugar,Glucose, Blood,Sugar, Blood
D003921 Diabetes Mellitus, Experimental Diabetes mellitus induced experimentally by administration of various diabetogenic agents or by PANCREATECTOMY. Alloxan Diabetes,Streptozocin Diabetes,Streptozotocin Diabetes,Experimental Diabetes Mellitus,Diabete, Streptozocin,Diabetes, Alloxan,Diabetes, Streptozocin,Diabetes, Streptozotocin,Streptozocin Diabete
D003922 Diabetes Mellitus, Type 1 A subtype of DIABETES MELLITUS that is characterized by INSULIN deficiency. It is manifested by the sudden onset of severe HYPERGLYCEMIA, rapid progression to DIABETIC KETOACIDOSIS, and DEATH unless treated with insulin. The disease may occur at any age, but is most common in childhood or adolescence. Diabetes Mellitus, Brittle,Diabetes Mellitus, Insulin-Dependent,Diabetes Mellitus, Juvenile-Onset,Diabetes Mellitus, Ketosis-Prone,Diabetes Mellitus, Sudden-Onset,Diabetes, Autoimmune,IDDM,Autoimmune Diabetes,Diabetes Mellitus, Insulin-Dependent, 1,Diabetes Mellitus, Type I,Insulin-Dependent Diabetes Mellitus 1,Juvenile-Onset Diabetes,Type 1 Diabetes,Type 1 Diabetes Mellitus,Brittle Diabetes Mellitus,Diabetes Mellitus, Insulin Dependent,Diabetes Mellitus, Juvenile Onset,Diabetes Mellitus, Ketosis Prone,Diabetes Mellitus, Sudden Onset,Diabetes, Juvenile-Onset,Diabetes, Type 1,Insulin Dependent Diabetes Mellitus 1,Insulin-Dependent Diabetes Mellitus,Juvenile Onset Diabetes,Juvenile-Onset Diabetes Mellitus,Ketosis-Prone Diabetes Mellitus,Sudden-Onset Diabetes Mellitus
D003924 Diabetes Mellitus, Type 2 A subclass of DIABETES MELLITUS that is not INSULIN-responsive or dependent (NIDDM). It is characterized initially by INSULIN RESISTANCE and HYPERINSULINEMIA; and eventually by GLUCOSE INTOLERANCE; HYPERGLYCEMIA; and overt diabetes. Type II diabetes mellitus is no longer considered a disease exclusively found in adults. Patients seldom develop KETOSIS but often exhibit OBESITY. Diabetes Mellitus, Adult-Onset,Diabetes Mellitus, Ketosis-Resistant,Diabetes Mellitus, Maturity-Onset,Diabetes Mellitus, Non-Insulin-Dependent,Diabetes Mellitus, Slow-Onset,Diabetes Mellitus, Stable,MODY,Maturity-Onset Diabetes Mellitus,NIDDM,Diabetes Mellitus, Non Insulin Dependent,Diabetes Mellitus, Noninsulin Dependent,Diabetes Mellitus, Noninsulin-Dependent,Diabetes Mellitus, Type II,Maturity-Onset Diabetes,Noninsulin-Dependent Diabetes Mellitus,Type 2 Diabetes,Type 2 Diabetes Mellitus,Adult-Onset Diabetes Mellitus,Diabetes Mellitus, Adult Onset,Diabetes Mellitus, Ketosis Resistant,Diabetes Mellitus, Maturity Onset,Diabetes Mellitus, Slow Onset,Diabetes, Maturity-Onset,Diabetes, Type 2,Ketosis-Resistant Diabetes Mellitus,Maturity Onset Diabetes,Maturity Onset Diabetes Mellitus,Non-Insulin-Dependent Diabetes Mellitus,Noninsulin Dependent Diabetes Mellitus,Slow-Onset Diabetes Mellitus,Stable Diabetes Mellitus
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response

Related Publications

A O Abdel-Zaher, and I T Ahmed, and A D El-Koussi
May 1983, British journal of pharmacology,
A O Abdel-Zaher, and I T Ahmed, and A D El-Koussi
January 1986, Progress in medicinal chemistry,
A O Abdel-Zaher, and I T Ahmed, and A D El-Koussi
June 1982, Journal of medicinal chemistry,
A O Abdel-Zaher, and I T Ahmed, and A D El-Koussi
January 1989, Journal of medicinal chemistry,
A O Abdel-Zaher, and I T Ahmed, and A D El-Koussi
May 2004, Neuropharmacology,
A O Abdel-Zaher, and I T Ahmed, and A D El-Koussi
September 1989, European journal of pharmacology,
A O Abdel-Zaher, and I T Ahmed, and A D El-Koussi
January 1988, Polish journal of pharmacology and pharmacy,
A O Abdel-Zaher, and I T Ahmed, and A D El-Koussi
January 2001, European urology,
A O Abdel-Zaher, and I T Ahmed, and A D El-Koussi
December 1995, Bioorganic & medicinal chemistry,
A O Abdel-Zaher, and I T Ahmed, and A D El-Koussi
January 1989, Life sciences,
Copied contents to your clipboard!