Respiratory plasticity: differential actions of continuous and episodic hypoxia and hypercapnia. 2001

T L Baker, and D D Fuller, and A G Zabka, and G S Mitchell
Center for Neuroscience, University of Wisconsin, 2015 Linden Drive West, Madison, WI 53706, USA. BakerT@svm.vetmed.wisc.edu

The objectives of this paper are: (1) to review advances in our understanding of the mechanisms of respiratory plasticity elicited by episodic versus continuous hypoxia in short to intermediate time domains (min to h); and (2) to present new data suggesting that different patterns of hypercapnia also elicit distinct forms of respiratory plasticity. Episodic, but not continuous hypoxia elicits long-term facilitation (LTF) of respiratory motor output. Phrenic LTF is a serotonin-dependent central neural mechanism that requires: (a) activation of spinal serotonin receptors; and (b) spinal protein synthesis. Continuous and episodic hypercapnia also elicit different mechanisms of plasticity. Continuous, severe hypercapnia (25 min of approximately 10% inspired CO(2)) elicits long-term depression (LTD) of phrenic motor output (-33+/-8% at 60 min post-hypercapnia) in anesthetized rats. In contrast, 3,5 min hypercapnic episodes do not elicit LTD (9+/-17% at 60 min). We hypothesize that the response of respiratory motoneurons to serotonergic and noradrenergic modulation may contribute to pattern sensitivity to hypoxia and hypercapnia.

UI MeSH Term Description Entries
D009046 Motor Neurons Neurons which activate MUSCLE CELLS. Neurons, Motor,Alpha Motorneurons,Motoneurons,Motor Neurons, Alpha,Neurons, Alpha Motor,Alpha Motor Neuron,Alpha Motor Neurons,Alpha Motorneuron,Motoneuron,Motor Neuron,Motor Neuron, Alpha,Motorneuron, Alpha,Motorneurons, Alpha,Neuron, Alpha Motor,Neuron, Motor
D009473 Neuronal Plasticity The capacity of the NERVOUS SYSTEM to change its reactivity as the result of successive activations. Brain Plasticity,Plasticity, Neuronal,Axon Pruning,Axonal Pruning,Dendrite Arborization,Dendrite Pruning,Dendritic Arborization,Dendritic Pruning,Dendritic Remodeling,Neural Plasticity,Neurite Pruning,Neuronal Arborization,Neuronal Network Remodeling,Neuronal Pruning,Neuronal Remodeling,Neuroplasticity,Synaptic Plasticity,Synaptic Pruning,Arborization, Dendrite,Arborization, Dendritic,Arborization, Neuronal,Arborizations, Dendrite,Arborizations, Dendritic,Arborizations, Neuronal,Axon Prunings,Axonal Prunings,Brain Plasticities,Dendrite Arborizations,Dendrite Prunings,Dendritic Arborizations,Dendritic Prunings,Dendritic Remodelings,Network Remodeling, Neuronal,Network Remodelings, Neuronal,Neural Plasticities,Neurite Prunings,Neuronal Arborizations,Neuronal Network Remodelings,Neuronal Plasticities,Neuronal Prunings,Neuronal Remodelings,Neuroplasticities,Plasticities, Brain,Plasticities, Neural,Plasticities, Neuronal,Plasticities, Synaptic,Plasticity, Brain,Plasticity, Neural,Plasticity, Synaptic,Pruning, Axon,Pruning, Axonal,Pruning, Dendrite,Pruning, Dendritic,Pruning, Neurite,Pruning, Neuronal,Pruning, Synaptic,Prunings, Axon,Prunings, Axonal,Prunings, Dendrite,Prunings, Dendritic,Prunings, Neurite,Prunings, Neuronal,Prunings, Synaptic,Remodeling, Dendritic,Remodeling, Neuronal,Remodeling, Neuronal Network,Remodelings, Dendritic,Remodelings, Neuronal,Remodelings, Neuronal Network,Synaptic Plasticities,Synaptic Prunings
D012137 Respiratory System The tubular and cavernous organs and structures, by means of which pulmonary ventilation and gas exchange between ambient air and the blood are brought about. Respiratory Tract,Respiratory Systems,Respiratory Tracts,System, Respiratory,Tract, Respiratory
D002628 Chemoreceptor Cells Cells specialized to detect chemical substances and relay that information centrally in the nervous system. Chemoreceptor cells may monitor external stimuli, as in TASTE and OLFACTION, or internal stimuli, such as the concentrations of OXYGEN and CARBON DIOXIDE in the blood. Chemoreceptive Cells,Cell, Chemoreceptive,Cell, Chemoreceptor,Cells, Chemoreceptive,Cells, Chemoreceptor,Chemoreceptive Cell,Chemoreceptor Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006935 Hypercapnia A clinical manifestation of abnormal increase in the amount of carbon dioxide in arterial blood.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000860 Hypoxia Sub-optimal OXYGEN levels in the ambient air of living organisms. Anoxia,Oxygen Deficiency,Anoxemia,Deficiency, Oxygen,Hypoxemia,Deficiencies, Oxygen,Oxygen Deficiencies

Related Publications

T L Baker, and D D Fuller, and A G Zabka, and G S Mitchell
August 2001, Japanese circulation journal,
T L Baker, and D D Fuller, and A G Zabka, and G S Mitchell
January 1973, Advances in experimental medicine and biology,
T L Baker, and D D Fuller, and A G Zabka, and G S Mitchell
February 1979, The Journal of physiology,
T L Baker, and D D Fuller, and A G Zabka, and G S Mitchell
September 2001, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology,
T L Baker, and D D Fuller, and A G Zabka, and G S Mitchell
August 2006, Respiratory physiology & neurobiology,
T L Baker, and D D Fuller, and A G Zabka, and G S Mitchell
March 1965, Fiziologicheskii zhurnal SSSR imeni I. M. Sechenova,
T L Baker, and D D Fuller, and A G Zabka, and G S Mitchell
January 1970, Respiration physiology,
T L Baker, and D D Fuller, and A G Zabka, and G S Mitchell
July 1984, Thorax,
T L Baker, and D D Fuller, and A G Zabka, and G S Mitchell
December 1977, Journal of applied physiology: respiratory, environmental and exercise physiology,
T L Baker, and D D Fuller, and A G Zabka, and G S Mitchell
November 1977, Journal of applied physiology: respiratory, environmental and exercise physiology,
Copied contents to your clipboard!