Pathways of straight and branched chain fatty acid catabolism in higher plants. 2002

Ian A Graham, and Peter J Eastmond
Centre for Novel Agricultural Products, Department of Biology, University of York, Heslington, YO10 5DD, York, UK. iag1@york.ac.uk

Significant advances in our knowledge of fatty acid breakdown in plants have been made since the subject was last comprehensively reviewed in the early 1990s. Many of the genes encoding the enzymes of peroxisomal beta-oxidation of straight chain fatty acids have now been identified. Biochemical genetic approaches in the model plant, Arabidopsis thaliana, have been particularly useful not only in the identification and functional characterisation of genes involved in fatty acid beta-oxidation but also in establishing the role of beta-oxidation at different stages in plant development. Advances in our understanding of branched chain amino acid catabolism have provided convincing evidence that mitochondria play an important role in this process. This work is discussed in the context of the long running debate on the sub-cellular localisation of fatty acid beta-oxidation in plants. A significant aspect of this review is that it provides the opportunity to present a comprehensive analysis of the complete Arabidopsis genome sequence for each of the different gene families that are known to be involved in beta-, alpha-, and omega-oxidation of fatty acids in plants. Inevitably, this increase in information, as well as providing many answers also raises many new intriguing questions, particularly as regards the regulation and physiological role of fatty acid catabolism throughout the higher plant life cycle.

UI MeSH Term Description Entries
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D003066 Coenzyme A Ligases Enzymes that catalyze the formation of acyl-CoA derivatives. EC 6.2.1. Acyl CoA Synthetase,Acyl CoA Synthetases,Acyl Coenzyme A Synthetase,Acyl Coenzyme A Synthetases,Coenzyme A Ligase,Coenzyme A Synthetase,Coenzyme A Synthetases,Acid-Thiol Ligases,Co A Ligases,A Ligase, Coenzyme,A Synthetase, Coenzyme,Acid Thiol Ligases,CoA Synthetase, Acyl,CoA Synthetases, Acyl,Ligase, Coenzyme A,Ligases, Acid-Thiol,Ligases, Co A,Ligases, Coenzyme A,Synthetase, Acyl CoA,Synthetase, Coenzyme A,Synthetases, Acyl CoA,Synthetases, Coenzyme A
D005227 Fatty Acids Organic, monobasic acids derived from hydrocarbons by the equivalent of oxidation of a methyl group to an alcohol, aldehyde, and then acid. Fatty acids are saturated and unsaturated (FATTY ACIDS, UNSATURATED). (Grant & Hackh's Chemical Dictionary, 5th ed) Aliphatic Acid,Esterified Fatty Acid,Fatty Acid,Fatty Acids, Esterified,Fatty Acids, Saturated,Saturated Fatty Acid,Aliphatic Acids,Acid, Aliphatic,Acid, Esterified Fatty,Acid, Saturated Fatty,Esterified Fatty Acids,Fatty Acid, Esterified,Fatty Acid, Saturated,Saturated Fatty Acids
D015870 Gene Expression The phenotypic manifestation of a gene or genes by the processes of GENETIC TRANSCRIPTION and GENETIC TRANSLATION. Expression, Gene,Expressions, Gene,Gene Expressions
D017360 Arabidopsis A plant genus of the family BRASSICACEAE that contains ARABIDOPSIS PROTEINS and MADS DOMAIN PROTEINS. The species A. thaliana is used for experiments in classical plant genetics as well as molecular genetic studies in plant physiology, biochemistry, and development. Arabidopsis thaliana,Cress, Mouse-ear,A. thaliana,A. thalianas,Arabidopses,Arabidopsis thalianas,Cress, Mouse ear,Cresses, Mouse-ear,Mouse-ear Cress,Mouse-ear Cresses,thaliana, A.,thaliana, Arabidopsis,thalianas, A.
D020675 Peroxisomes Microbodies which occur in animal and plant cells and in certain fungi and protozoa. They contain peroxidase, catalase, and allied enzymes. (From Singleton and Sainsbury, Dictionary of Microbiology and Molecular Biology, 2nd ed) Peroxisome
D029681 Arabidopsis Proteins Proteins that originate from plants species belonging to the genus ARABIDOPSIS. The most intensely studied species of Arabidopsis, Arabidopsis thaliana, is commonly used in laboratory experiments. Arabidopsis thaliana Proteins,Thale Cress Proteins,Proteins, Arabidopsis thaliana,thaliana Proteins, Arabidopsis

Related Publications

Ian A Graham, and Peter J Eastmond
September 1995, FEMS microbiology letters,
Ian A Graham, and Peter J Eastmond
March 1976, Bacteriological reviews,
Ian A Graham, and Peter J Eastmond
August 1994, The Journal of nutrition,
Ian A Graham, and Peter J Eastmond
January 2018, Frontiers in microbiology,
Ian A Graham, and Peter J Eastmond
January 1996, Mineral and electrolyte metabolism,
Ian A Graham, and Peter J Eastmond
July 1996, Oncology reports,
Ian A Graham, and Peter J Eastmond
February 1976, Journal of pharmaceutical sciences,
Ian A Graham, and Peter J Eastmond
November 1994, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!