Nuclei in which functionally identified spinothalamic tract neurons terminate. 1979

A E Applebaum, and R B Leonard, and D R Kenshalo, and R F Martin, and W D Willis

The approximate level of termination of the axons of individual, functionally characterized spinothalamic tract neurons within the monkey thalmus was mapped by antidromic activation using a monopolar electrode which was moved in a systematic grid of tracks through the thalamus. The course of individual axons could be followed through several thalamic levels, and in a few cases branches to both the VPL nucleus and to the intralaminar nuclei were demonstrated. Most of the axons studied, however, projected just to the VPLc or VPLo nuclei. The spinothalamic tract cells that projected to the VPLc nucleus included representative of all known functional categories: low threshold, wide dynamic range, high threshold and "deep." It is speculated that these different classes of spinothalamic projections could make contributions to such sensory modalities as touch, proprioception and pain.

UI MeSH Term Description Entries
D008252 Macaca fascicularis A species of the genus MACACA which typically lives near the coast in tidal creeks and mangrove swamps primarily on the islands of the Malay peninsula. Burmese Long-Tailed Macaque,Crab-Eating Monkey,Cynomolgus Monkey,M. f. aurea,M. fascicularis,Macaca fascicularis aurea,Monkey, Crab-Eating,Monkey, Cynomolgus,Crab-Eating Macaque,Burmese Long Tailed Macaque,Crab Eating Macaque,Crab Eating Monkey,Crab-Eating Macaques,Crab-Eating Monkeys,Cynomolgus Monkeys,Long-Tailed Macaque, Burmese,Macaque, Burmese Long-Tailed,Macaque, Crab-Eating,Monkey, Crab Eating
D008465 Mechanoreceptors Cells specialized to transduce mechanical stimuli and relay that information centrally in the nervous system. Mechanoreceptor cells include the INNER EAR hair cells, which mediate hearing and balance, and the various somatosensory receptors, often with non-neural accessory structures. Golgi Tendon Organ,Golgi Tendon Organs,Krause's End Bulb,Krause's End Bulbs,Mechanoreceptor,Mechanoreceptor Cell,Meissner's Corpuscle,Neurotendinous Spindle,Neurotendinous Spindles,Receptors, Stretch,Ruffini's Corpuscle,Ruffini's Corpuscles,Stretch Receptor,Stretch Receptors,Mechanoreceptor Cells,Bulb, Krause's End,Bulbs, Krause's End,Cell, Mechanoreceptor,Cells, Mechanoreceptor,Corpuscle, Meissner's,Corpuscle, Ruffini's,Corpuscles, Ruffini's,End Bulb, Krause's,End Bulbs, Krause's,Krause End Bulb,Krause End Bulbs,Krauses End Bulb,Krauses End Bulbs,Meissner Corpuscle,Meissners Corpuscle,Organ, Golgi Tendon,Organs, Golgi Tendon,Receptor, Stretch,Ruffini Corpuscle,Ruffini Corpuscles,Ruffinis Corpuscle,Ruffinis Corpuscles,Spindle, Neurotendinous,Spindles, Neurotendinous,Tendon Organ, Golgi,Tendon Organs, Golgi
D010146 Pain An unpleasant sensation induced by noxious stimuli which are detected by NERVE ENDINGS of NOCICEPTIVE NEURONS. Suffering, Physical,Ache,Pain, Burning,Pain, Crushing,Pain, Migratory,Pain, Radiating,Pain, Splitting,Aches,Burning Pain,Burning Pains,Crushing Pain,Crushing Pains,Migratory Pain,Migratory Pains,Pains, Burning,Pains, Crushing,Pains, Migratory,Pains, Radiating,Pains, Splitting,Physical Suffering,Physical Sufferings,Radiating Pain,Radiating Pains,Splitting Pain,Splitting Pains,Sufferings, Physical
D011434 Proprioception Sensory functions that transduce stimuli received by proprioceptive receptors in joints, tendons, muscles, and the INNER EAR into neural impulses to be transmitted to the CENTRAL NERVOUS SYSTEM. Proprioception provides sense of stationary positions and movements of one's body parts, and is important in maintaining KINESTHESIA and POSTURAL BALANCE. Labyrinthine Sense,Position Sense,Posture Sense,Sense of Equilibrium,Vestibular Sense,Sense of Position,Equilibrium Sense,Sense, Labyrinthine,Sense, Position,Sense, Posture,Sense, Vestibular
D001931 Brain Mapping Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures. Brain Electrical Activity Mapping,Functional Cerebral Localization,Topographic Brain Mapping,Brain Mapping, Topographic,Functional Cerebral Localizations,Mapping, Brain,Mapping, Topographic Brain
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000882 Haplorhini A suborder of PRIMATES consisting of six families: CEBIDAE (some New World monkeys), ATELIDAE (some New World monkeys), CERCOPITHECIDAE (Old World monkeys), HYLOBATIDAE (gibbons and siamangs), CALLITRICHINAE (marmosets and tamarins), and HOMINIDAE (humans and great apes). Anthropoidea,Monkeys,Anthropoids,Monkey
D013133 Spinothalamic Tracts A bundle of NERVE FIBERS connecting each posterior horn of the spinal cord to the opposite side of the THALAMUS, carrying information about pain, temperature, and touch. It is one of two major routes by which afferent spinal NERVE FIBERS carrying sensations of somaesthesis are transmitted to the THALAMUS. Spinothalamic Tract,Tract, Spinothalamic,Tracts, Spinothalamic
D013787 Thalamic Nuclei Several groups of nuclei in the thalamus that serve as the major relay centers for sensory impulses in the brain. Nuclei, Thalamic
D014110 Touch Sensation of making physical contact with objects, animate or inanimate. Tactile stimuli are detected by MECHANORECEPTORS in the skin and mucous membranes. Tactile Sense,Sense of Touch,Taction,Sense, Tactile,Senses, Tactile,Tactile Senses,Tactions,Touch Sense,Touch Senses

Related Publications

A E Applebaum, and R B Leonard, and D R Kenshalo, and R F Martin, and W D Willis
March 1989, The Journal of comparative neurology,
A E Applebaum, and R B Leonard, and D R Kenshalo, and R F Martin, and W D Willis
October 2008, Journal of neurophysiology,
A E Applebaum, and R B Leonard, and D R Kenshalo, and R F Martin, and W D Willis
December 1978, Science (New York, N.Y.),
A E Applebaum, and R B Leonard, and D R Kenshalo, and R F Martin, and W D Willis
September 1990, The Journal of comparative neurology,
A E Applebaum, and R B Leonard, and D R Kenshalo, and R F Martin, and W D Willis
September 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience,
A E Applebaum, and R B Leonard, and D R Kenshalo, and R F Martin, and W D Willis
July 1982, Brain research,
A E Applebaum, and R B Leonard, and D R Kenshalo, and R F Martin, and W D Willis
September 1984, Experimental neurology,
A E Applebaum, and R B Leonard, and D R Kenshalo, and R F Martin, and W D Willis
May 1975, Journal of neurophysiology,
A E Applebaum, and R B Leonard, and D R Kenshalo, and R F Martin, and W D Willis
July 1978, Federation proceedings,
A E Applebaum, and R B Leonard, and D R Kenshalo, and R F Martin, and W D Willis
January 1998, Anatomy and embryology,
Copied contents to your clipboard!