Progesterone inhibits human endometrial cancer cell growth and invasiveness: down-regulation of cellular adhesion molecules through progesterone B receptors. 2002

Donghai Dai, and Douglas M Wolf, and Elizabeth S Litman, and Michael J White, and Kimberly K Leslie
The Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of New Mexico Health Sciences Center, 2211 Lomas Boulevard NE, Albuquerque, New Mexico 87131-5286, USA.

Progesterone is a critical steroid hormone that controls cell proliferation and differentiation in the female reproductive tract. Progesterone acts through two nuclear receptor isoforms, progesterone receptors A and B (PRA and PRB, respectively), each with unique cellular effects. Loss of PRB has recently been linked to the development of poorly differentiated endometrial tumors, a lethal form of cancer. To study the molecular effects of progesterone, progesterone receptors were introduced into Hec50co endometrial cancer cells by adenoviral vectors encoding either PRA or PRB. Progesterone induced the cyclin-dependent kinase inhibitors p21 and p27, thereby significantly reducing the percentage of proliferating cells. Cancer cell invasion was also markedly inhibited as measured by Matrigel invasion studies. Similarly, a differentiated, secretory phenotype was induced by progesterone in cells expressing PRB. However, replicative senescence was induced by progesterone only in cells expressing PRA. Expression array analysis followed by confirmatory semiquantitative reverse transcription-PCR experiments demonstrated a significant progesterone-dependent inhibition of expression of a cadre of cellular adhesion molecules, including fibronectin, integrin alpha3, integrin beta1, integrin beta3, and cadherin 6. The level of down-regulation of adhesion molecule expression was significantly greater in the presence of the B isoform, demonstrating that progesterone acts principally through B receptors to inhibit cancer cell invasiveness modulated by adhesion molecules.

UI MeSH Term Description Entries
D011374 Progesterone The major progestational steroid that is secreted primarily by the CORPUS LUTEUM and the PLACENTA. Progesterone acts on the UTERUS, the MAMMARY GLANDS and the BRAIN. It is required in EMBRYO IMPLANTATION; PREGNANCY maintenance, and the development of mammary tissue for MILK production. Progesterone, converted from PREGNENOLONE, also serves as an intermediate in the biosynthesis of GONADAL STEROID HORMONES and adrenal CORTICOSTEROIDS. Pregnenedione,Progesterone, (13 alpha,17 alpha)-(+-)-Isomer,Progesterone, (17 alpha)-Isomer,Progesterone, (9 beta,10 alpha)-Isomer
D011980 Receptors, Progesterone Specific proteins found in or on cells of progesterone target tissues that specifically combine with progesterone. The cytosol progesterone-receptor complex then associates with the nucleic acids to initiate protein synthesis. There are two kinds of progesterone receptors, A and B. Both are induced by estrogen and have short half-lives. Progesterone Receptors,Progestin Receptor,Progestin Receptors,Receptor, Progesterone,Receptors, Progestin,Progesterone Receptor,Receptor, Progestin
D002453 Cell Cycle The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE. Cell Division Cycle,Cell Cycles,Cell Division Cycles,Cycle, Cell,Cycle, Cell Division,Cycles, Cell,Cycles, Cell Division,Division Cycle, Cell,Division Cycles, Cell
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D005260 Female Females
D006131 Growth Inhibitors Endogenous or exogenous substances which inhibit the normal growth of human and animal cells or micro-organisms, as distinguished from those affecting plant growth ( Cell Growth Inhibitor,Cell Growth Inhibitors,Growth Inhibitor,Growth Inhibitor, Cell,Growth Inhibitors, Cell,Inhibitor, Cell Growth,Inhibitor, Growth,Inhibitors, Cell Growth,Inhibitors, Growth
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured
D015536 Down-Regulation A negative regulatory effect on physiological processes at the molecular, cellular, or systemic level. At the molecular level, the major regulatory sites include membrane receptors, genes (GENE EXPRESSION REGULATION), mRNAs (RNA, MESSENGER), and proteins. Receptor Down-Regulation,Down-Regulation (Physiology),Downregulation,Down Regulation,Down-Regulation, Receptor
D015815 Cell Adhesion Molecules Surface ligands, usually glycoproteins, that mediate cell-to-cell adhesion. Their functions include the assembly and interconnection of various vertebrate systems, as well as maintenance of tissue integration, wound healing, morphogenic movements, cellular migrations, and metastasis. Cell Adhesion Molecule,Intercellular Adhesion Molecule,Intercellular Adhesion Molecules,Leukocyte Adhesion Molecule,Leukocyte Adhesion Molecules,Saccharide-Mediated Cell Adhesion Molecules,Saccharide Mediated Cell Adhesion Molecules,Adhesion Molecule, Cell,Adhesion Molecule, Intercellular,Adhesion Molecule, Leukocyte,Adhesion Molecules, Cell,Adhesion Molecules, Intercellular,Adhesion Molecules, Leukocyte,Molecule, Cell Adhesion,Molecule, Intercellular Adhesion,Molecule, Leukocyte Adhesion,Molecules, Cell Adhesion,Molecules, Intercellular Adhesion,Molecules, Leukocyte Adhesion

Related Publications

Donghai Dai, and Douglas M Wolf, and Elizabeth S Litman, and Michael J White, and Kimberly K Leslie
January 2012, Annals of allergy, asthma & immunology : official publication of the American College of Allergy, Asthma, & Immunology,
Donghai Dai, and Douglas M Wolf, and Elizabeth S Litman, and Michael J White, and Kimberly K Leslie
November 2021, Journal of ethnopharmacology,
Donghai Dai, and Douglas M Wolf, and Elizabeth S Litman, and Michael J White, and Kimberly K Leslie
October 2014, Cancer prevention research (Philadelphia, Pa.),
Donghai Dai, and Douglas M Wolf, and Elizabeth S Litman, and Michael J White, and Kimberly K Leslie
October 1986, American journal of obstetrics and gynecology,
Donghai Dai, and Douglas M Wolf, and Elizabeth S Litman, and Michael J White, and Kimberly K Leslie
March 2024, Bioscience reports,
Donghai Dai, and Douglas M Wolf, and Elizabeth S Litman, and Michael J White, and Kimberly K Leslie
May 2016, Archives of biochemistry and biophysics,
Donghai Dai, and Douglas M Wolf, and Elizabeth S Litman, and Michael J White, and Kimberly K Leslie
May 1995, Leukemia & lymphoma,
Donghai Dai, and Douglas M Wolf, and Elizabeth S Litman, and Michael J White, and Kimberly K Leslie
December 2012, Panminerva medica,
Donghai Dai, and Douglas M Wolf, and Elizabeth S Litman, and Michael J White, and Kimberly K Leslie
January 2003, Journal of the Society for Gynecologic Investigation,
Donghai Dai, and Douglas M Wolf, and Elizabeth S Litman, and Michael J White, and Kimberly K Leslie
July 2013, Carcinogenesis,
Copied contents to your clipboard!