Inhibition of Ca2+-activated and voltage-dependent K+ currents by 2-mercaptophenyl-1,4-naphthoquinone in pituitary GH3 cells: contribution to its antiproliferative effect. 2002

Mei-Han Huang, and Sheng-Nan Wu, and Chi-Pien Chen, and Ai-Yu Shen
Department of Pharmaceutical Science, Foo Yin Institute of Technology, Ta-Liao, Kaohsiung County, Taiwan, ROC.

Quinones have been shown to possess antineoplastic activity; however, their effects on ionic currents remain unclear. The effects of 2-mercaptophenyl-1,4-naphthoquinone (2-MPNQ), menadione (MD) and 1,4-naphthoquinone (1,4 NQ) on cell proliferation and ionic currents in pituitary GH3 lactotrophs were investigated in this study. 2-MPNQ was more potent than menadione or 1,4-naphthoquinone in inhibiting the growth of GH3 cells. 2-MPNQ decreased cell proliferation in a concentration-dependent manner with an IC50 value of 3 microM. In whole-cell recording experiments, 2-MPNQ reversibly caused an inhibition of Ca2+-activated K+ current (I(K(Ca)) in a concentration-dependent manner. The IC50 value for 2-MPNQ-induced inhibition of I(K(Ca)) was 7 microM. In the inside-out configuration of single channel recording, 2-MPNQ (30 microM) applied intracellularly suppressed the activity of large-conductance Ca2+-activated K+ (BK(Ca)) channels but did not modify single channel conductance. Menadione (30 microM) had no effect on the channel activity, whereas 1,4-naphthoquinone (30 microM) suppressed it by about 26%. Both 2-MPNQ and thimerosal suppressed the dithiothreitol-stimulated channel activity. 2-MPNQ also blocked voltage-dependent K+ currents, but it produced a slight reduction of L-type Ca2+ inward current. However, unlike E-4031, 2-MPNQ (30 microM) did not suppress inwardly rectifying K+ current present in GH3 cells. Under the current clamp configuration, the presence of 2-MPNQ (30 microM) depolarized the cells, and increased the frequency and duration of spontaneous action potentials. The 2-MPNQ-mediated inhibition of K+ currents would affect hormone secretion and cell excitability. The blockade of these ionic channels by 2-MPNQ may partly explain its inhibitory effect on the proliferation of GH3 cells.

UI MeSH Term Description Entries
D009285 Naphthoquinones Naphthalene rings which contain two ketone moieties in any position. They can be substituted in any position except at the ketone groups. Naphthalenediones,Naphthazarins,Naphthoquinone
D010911 Pituitary Neoplasms Neoplasms which arise from or metastasize to the PITUITARY GLAND. The majority of pituitary neoplasms are adenomas, which are divided into non-secreting and secreting forms. Hormone producing forms are further classified by the type of hormone they secrete. Pituitary adenomas may also be characterized by their staining properties (see ADENOMA, BASOPHIL; ADENOMA, ACIDOPHIL; and ADENOMA, CHROMOPHOBE). Pituitary tumors may compress adjacent structures, including the HYPOTHALAMUS, several CRANIAL NERVES, and the OPTIC CHIASM. Chiasmal compression may result in bitemporal HEMIANOPSIA. Pituitary Cancer,Cancer of Pituitary,Cancer of the Pituitary,Pituitary Adenoma,Pituitary Carcinoma,Pituitary Tumors,Adenoma, Pituitary,Adenomas, Pituitary,Cancer, Pituitary,Cancers, Pituitary,Carcinoma, Pituitary,Carcinomas, Pituitary,Neoplasm, Pituitary,Neoplasms, Pituitary,Pituitary Adenomas,Pituitary Cancers,Pituitary Carcinomas,Pituitary Neoplasm,Pituitary Tumor,Tumor, Pituitary,Tumors, Pituitary
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013849 Thimerosal An ethylmercury-sulfidobenzoate that has been used as a preservative in VACCINES; ANTIVENINS; and OINTMENTS. It was formerly used as a topical antiseptic. It degrades to ethylmercury and thiosalicylate. Mercurothiolate,Thiomersal,Thiomersalate,Merthiolate,Sodium Ethylmercurithiosalicylate,Vitaseptol,Ethylmercurithiosalicylate, Sodium
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured
D015221 Potassium Channels Cell membrane glycoproteins that are selectively permeable to potassium ions. At least eight major groups of K channels exist and they are made up of dozens of different subunits. Ion Channels, Potassium,Ion Channel, Potassium,Potassium Channel,Potassium Ion Channels,Channel, Potassium,Channel, Potassium Ion,Channels, Potassium,Channels, Potassium Ion,Potassium Ion Channel

Related Publications

Mei-Han Huang, and Sheng-Nan Wu, and Chi-Pien Chen, and Ai-Yu Shen
April 2006, European journal of pharmacology,
Mei-Han Huang, and Sheng-Nan Wu, and Chi-Pien Chen, and Ai-Yu Shen
December 2001, The Chinese journal of physiology,
Mei-Han Huang, and Sheng-Nan Wu, and Chi-Pien Chen, and Ai-Yu Shen
February 1985, Proceedings of the National Academy of Sciences of the United States of America,
Mei-Han Huang, and Sheng-Nan Wu, and Chi-Pien Chen, and Ai-Yu Shen
July 1999, Neuropharmacology,
Mei-Han Huang, and Sheng-Nan Wu, and Chi-Pien Chen, and Ai-Yu Shen
July 2000, Journal of investigative medicine : the official publication of the American Federation for Clinical Research,
Mei-Han Huang, and Sheng-Nan Wu, and Chi-Pien Chen, and Ai-Yu Shen
August 1991, Proceedings. Biological sciences,
Mei-Han Huang, and Sheng-Nan Wu, and Chi-Pien Chen, and Ai-Yu Shen
January 1999, Life sciences,
Mei-Han Huang, and Sheng-Nan Wu, and Chi-Pien Chen, and Ai-Yu Shen
January 2017, Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology,
Mei-Han Huang, and Sheng-Nan Wu, and Chi-Pien Chen, and Ai-Yu Shen
April 1993, Neuron,
Mei-Han Huang, and Sheng-Nan Wu, and Chi-Pien Chen, and Ai-Yu Shen
September 1999, The Journal of pharmacology and experimental therapeutics,
Copied contents to your clipboard!