Multigroup discrete ordinates modeling of 125I 6702 seed dose distributions using a broad energy-group cross section representation. 2002

George M Daskalov, and R S Baker, and D W O Rogers, and J F Williamson
National Research Council of Canada, IRS/INMS, Ottawa, ON. daskalov@irs.phy.nrc.ca

Our purpose in this work is to demonstrate that the efficiency of dose-rate computations in 125I brachytherapy, using multigroup discrete ordinates radiation transport simulations, can be significantly enhanced using broad energy group cross sections without a loss of accuracy. To this end, the DANTSYS multigroup discrete ordinates neutral particle transport code was used to estimate the absorbed dose-rate distributions around an 125I-model 6702 seed in two-dimensional (2-D) cylindrical R-Z geometry for four different problems spanning the geometries found in clinical practice. First, simulations with a high resolution 210 energy groups library were used to analyze the photon flux spectral distribution throughout this set of problems. These distributions were used to design an energy group structure consisting of three broad groups along with suitable weighting functions from which the three-group cross sections were derived. The accuracy of 2-D DANTSYS dose-rate calculations was benchmarked against parallel Monte Carlo simulations. Ray effects were remedied by using the DANTSYS internal first collision source algorithm. It is demonstrated that the 125I primary photon spectrum leads to inappropriate weighting functions. An accuracy of +/-5% is achieved in the four problem geometries considered using geometry-independent three-group libraries derived from either material-specific weighting functions or a single material-independent weighting function. Agreement between Monte Carlo and the three-group DANTSYS calculations, within three standard Monte Carlo deviations, is observed everywhere except for a limited region along the Z axis of rotational symmetry, where ray effects are difficult to mitigate. The three-group DANTSYS calculations are 10-13 times faster than ones with a 210-group cross section library for 125I dosimetry problems. Compared to 2-D EGS4 Monte Carlo calculations, the 3-group DANTSYS simulations are a 100-fold more efficient. Provided that these efficiency gains can be sustained in three-dimensional geometries, the results suggest that discrete ordinates simulations may have the potential to serve as an efficient and accurate dose-calculation algorithm for low-energy brachytherapy treatment planning.

UI MeSH Term Description Entries
D009010 Monte Carlo Method In statistics, a technique for numerically approximating the solution of a mathematical problem by studying the distribution of some random variable, often generated by a computer. The name alludes to the randomness characteristic of the games of chance played at the gambling casinos in Monte Carlo. (From Random House Unabridged Dictionary, 2d ed, 1993) Method, Monte Carlo
D011874 Radiometry The measurement of radiation by photography, as in x-ray film and film badge, by Geiger-Mueller tube, and by SCINTILLATION COUNTING. Geiger-Mueller Counters,Nuclear Track Detection,Radiation Dosimetry,Dosimetry, Radiation,Geiger Counter,Geiger-Mueller Counter Tube,Geiger-Mueller Probe,Geiger-Mueller Tube,Radiation Counter,Counter Tube, Geiger-Mueller,Counter Tubes, Geiger-Mueller,Counter, Geiger,Counter, Radiation,Counters, Geiger,Counters, Geiger-Mueller,Counters, Radiation,Detection, Nuclear Track,Dosimetries, Radiation,Geiger Counters,Geiger Mueller Counter Tube,Geiger Mueller Counters,Geiger Mueller Probe,Geiger Mueller Tube,Geiger-Mueller Counter Tubes,Geiger-Mueller Probes,Geiger-Mueller Tubes,Probe, Geiger-Mueller,Probes, Geiger-Mueller,Radiation Counters,Radiation Dosimetries,Tube, Geiger-Mueller,Tube, Geiger-Mueller Counter,Tubes, Geiger-Mueller,Tubes, Geiger-Mueller Counter
D011880 Radiotherapy Planning, Computer-Assisted Computer-assisted mathematical calculations of beam angles, intensities of radiation, and duration of irradiation in radiotherapy. Computer-Assisted Radiotherapy Planning,Dosimetry Calculations, Computer-Assisted,Planning, Computer-Assisted Radiotherapy,Calculation, Computer-Assisted Dosimetry,Calculations, Computer-Assisted Dosimetry,Computer Assisted Radiotherapy Planning,Computer-Assisted Dosimetry Calculation,Computer-Assisted Dosimetry Calculations,Dosimetry Calculation, Computer-Assisted,Dosimetry Calculations, Computer Assisted,Planning, Computer Assisted Radiotherapy,Radiotherapy Planning, Computer Assisted
D001918 Brachytherapy A collective term for interstitial, intracavity, and surface radiotherapy. It uses small sealed or partly-sealed sources that may be placed on or near the body surface or within a natural body cavity or implanted directly into the tissues. Curietherapy,Implant Radiotherapy,Plaque Therapy, Radioisotope,Radioisotope Brachytherapy,Radiotherapy, Interstitial,Radiotherapy, Intracavity,Radiotherapy, Surface,Brachytherapy, Radioisotope,Interstitial Radiotherapy,Intracavity Radiotherapy,Radioisotope Plaque Therapy,Radiotherapy, Implant,Surface Radiotherapy,Therapy, Radioisotope Plaque
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D012984 Software Sequential operating programs and data which instruct the functioning of a digital computer. Computer Programs,Computer Software,Open Source Software,Software Engineering,Software Tools,Computer Applications Software,Computer Programs and Programming,Computer Software Applications,Application, Computer Software,Applications Software, Computer,Applications Softwares, Computer,Applications, Computer Software,Computer Applications Softwares,Computer Program,Computer Software Application,Engineering, Software,Open Source Softwares,Program, Computer,Programs, Computer,Software Application, Computer,Software Applications, Computer,Software Tool,Software, Computer,Software, Computer Applications,Software, Open Source,Softwares, Computer Applications,Softwares, Open Source,Source Software, Open,Source Softwares, Open,Tool, Software,Tools, Software

Related Publications

George M Daskalov, and R S Baker, and D W O Rogers, and J F Williamson
January 1988, Medical physics,
George M Daskalov, and R S Baker, and D W O Rogers, and J F Williamson
March 2001, Medical physics,
George M Daskalov, and R S Baker, and D W O Rogers, and J F Williamson
May 2006, Physics in medicine and biology,
George M Daskalov, and R S Baker, and D W O Rogers, and J F Williamson
May 1987, International journal of radiation oncology, biology, physics,
George M Daskalov, and R S Baker, and D W O Rogers, and J F Williamson
July 2015, Medical physics,
George M Daskalov, and R S Baker, and D W O Rogers, and J F Williamson
January 1990, Medical physics,
George M Daskalov, and R S Baker, and D W O Rogers, and J F Williamson
October 1992, Physics in medicine and biology,
George M Daskalov, and R S Baker, and D W O Rogers, and J F Williamson
July 2020, Scientific reports,
George M Daskalov, and R S Baker, and D W O Rogers, and J F Williamson
March 2020, Analytical chemistry,
George M Daskalov, and R S Baker, and D W O Rogers, and J F Williamson
January 1975, Physics in medicine and biology,
Copied contents to your clipboard!