The M184V mutation reduces the selective excision of zidovudine 5'-monophosphate (AZTMP) by the reverse transcriptase of human immunodeficiency virus type 1. 2002

Paul L Boyer, and Stefan G Sarafianos, and Edward Arnold, and Stephen H Hughes
HIV Drug Resistance Program, National Cancer Institute, Frederick, Maryland 21702-1201, USA.

The M184V mutation in human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) causes resistance to lamivudine, but it also increases the sensitivity of the virus to zidovudine (3'-azido-3'-deoxythymidine; AZT). This sensitization to AZT is seen both in the presence and the absence of the mutations that confer resistance to AZT. AZT resistance is due to enhanced excision of AZT 5'-monophosphate (AZTMP) from the end of the primer by the RT of the resistant virus. Published data suggest that the excision reaction involves pyrophosphorolysis but that the likely in vivo pyrophosphate donor is not pyrophosphate but ATP. The mutations that lead to AZT resistance enhance ATP binding and, in so doing, enhance pyrophosphorolysis. The excision reaction is specific for AZT because HIV-1 RT, which can form a closed complex with a dideoxy-terminated primer and an incoming deoxynucleoside triphosphate (dNTP), does not form the closed complex with an AZTMP-terminated primer and an incoming dNTP. This means that an AZTMP-terminated primer has better access to the site where it can be excised. The M184V mutation alters the polymerase active site in a fashion that specifically interferes with ATP-mediated excision of AZTMP from the end of the primer strand. The M184V mutation does not affect the incorporation of AZT 5'-triphosphate (AZTTP), either in the presence or the absence of mutations that enhance AZTMP excision. However, in the presence of ATP, the M184V mutation does decrease the ability of HIV-1 RT to carry out AZTMP excision. Based on these results, and on the results of other excision experiments, we present a model to explain how the M184V mutation affects AZTMP excision.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D013942 Thymine Nucleotides Phosphate esters of THYMIDINE in N-glycosidic linkage with ribose or deoxyribose, as occurs in nucleic acids. (From Dorland, 28th ed, p1154) Thymidine Phosphates,Nucleotides, Thymine,Phosphates, Thymidine
D015215 Zidovudine A dideoxynucleoside compound in which the 3'-hydroxy group on the sugar moiety has been replaced by an azido group. This modification prevents the formation of phosphodiester linkages which are needed for the completion of nucleic acid chains. The compound is a potent inhibitor of HIV replication, acting as a chain-terminator of viral DNA during reverse transcription. It improves immunologic function, partially reverses the HIV-induced neurological dysfunction, and improves certain other clinical abnormalities associated with AIDS. Its principal toxic effect is dose-dependent suppression of bone marrow, resulting in anemia and leukopenia. AZT (Antiviral),Azidothymidine,3'-Azido-2',3'-Dideoxythymidine,3'-Azido-3'-deoxythymidine,AZT Antiviral,AZT, Antiviral,BW A509U,BWA-509U,Retrovir,3' Azido 2',3' Dideoxythymidine,3' Azido 3' deoxythymidine,Antiviral AZT,BWA 509U,BWA509U
D015497 HIV-1 The type species of LENTIVIRUS and the etiologic agent of AIDS. It is characterized by its cytopathic effect and affinity for the T4-lymphocyte. Human immunodeficiency virus 1,HIV-I,Human Immunodeficiency Virus Type 1,Immunodeficiency Virus Type 1, Human
D054303 HIV Reverse Transcriptase A reverse transcriptase encoded by the POL GENE of HIV. It is a heterodimer of 66 kDa and 51 kDa subunits that are derived from a common precursor protein. The heterodimer also includes an RNAse H activity (RIBONUCLEASE H, HUMAN IMMUNODEFICIENCY VIRUS) that plays an essential role the viral replication process. Reverse Transcriptase, HIV,Reverse Transcriptase, Human Immunodeficiency Virus,Transcriptase, HIV Reverse
D054306 Dideoxynucleotides The phosphate esters of DIDEOXYNUCLEOSIDES. Dideoxynucleotide Triphosphates,ddNTPs,Triphosphates, Dideoxynucleotide
D018894 Reverse Transcriptase Inhibitors Inhibitors of reverse transcriptase (RNA-DIRECTED DNA POLYMERASE), an enzyme that synthesizes DNA on an RNA template. Reverse Transcriptase Inhibitor,Inhibitors, Reverse Transcriptase,Inhibitor, Reverse Transcriptase,Transcriptase Inhibitor, Reverse
D024882 Drug Resistance, Viral The ability of viruses to resist or to become tolerant to chemotherapeutic agents or antiviral agents. This resistance is acquired through gene mutation. Antiviral Drug Resistance,Antiviral Drug Resistances,Drug Resistances, Viral

Related Publications

Paul L Boyer, and Stefan G Sarafianos, and Edward Arnold, and Stephen H Hughes
November 2003, Antimicrobial agents and chemotherapy,
Paul L Boyer, and Stefan G Sarafianos, and Edward Arnold, and Stephen H Hughes
July 2005, Antimicrobial agents and chemotherapy,
Paul L Boyer, and Stefan G Sarafianos, and Edward Arnold, and Stephen H Hughes
July 2002, Antimicrobial agents and chemotherapy,
Paul L Boyer, and Stefan G Sarafianos, and Edward Arnold, and Stephen H Hughes
November 2003, Clinical and diagnostic laboratory immunology,
Paul L Boyer, and Stefan G Sarafianos, and Edward Arnold, and Stephen H Hughes
April 2000, Journal of virology,
Paul L Boyer, and Stefan G Sarafianos, and Edward Arnold, and Stephen H Hughes
April 2004, The new microbiologica,
Paul L Boyer, and Stefan G Sarafianos, and Edward Arnold, and Stephen H Hughes
February 1996, Biological chemistry Hoppe-Seyler,
Paul L Boyer, and Stefan G Sarafianos, and Edward Arnold, and Stephen H Hughes
December 2002, AIDS (London, England),
Paul L Boyer, and Stefan G Sarafianos, and Edward Arnold, and Stephen H Hughes
January 2008, Antimicrobial agents and chemotherapy,
Copied contents to your clipboard!